Horizontal San Andres Well Performance & Future **Potential Offsetting Wasson Field**,

Yoakum, Co., TX - Riley Exploration Permian LLC

Presented at the 25th Annual CO₂ Conference

Thursday Dec 12th, 2019

Bush Convention Center Midland, Texas

Wasson etal System

THE INFORMATION IN THIS PRESENTATION HAS BEEN PREPARED BY RILEY EXPLORATION – PERMIAN, LLC AND/OR ITS SUBSIDIARIES, AFFILIATES OR REPRESENTATIVES (COLLECTIVELY, THE "COMPANY") FOR INFORMATIONAL PURPOSES ONLY. NO PERSON HAS BEEN AUTHORIZED TO GIVE ANY INFORMATION REGARDING THE COMPANY OR TO MAKE ANY REPRESENTATIONS ON BEHALF OF THE COMPANY OTHER THAN THE INFORMATION CONTAINED IN THIS PRESENTATION.

NO REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, IS MADE AS TO THE ACCURACY OR COMPLETENESS OF THE INFORMATION IN THIS PRESENTATION. NOTHING CONTAINED HEREIN IS, OR SHALL BE RELIED UPON AS, A PROMISE OR REPRESENTATION, WHETHER AS TO THE PAST OR THE FUTURE. THIS PRESENTATION DOES NOT PURPORT TO CONTAIN ALL OF THE INFORMATION THAT MAY BE REQUIRED TO EVALUATE THE COMPANY'S OPERATIONS OR TO MAKE TO DERIVE ANY INFORMATION OR CONCLUSION THEREFROM.

THE DELIVERY OF THIS PRESENTATOIN DOES NOT IMPLY THAT THE INFORMATION CONTAINED HEREIN IS CORRECT AS OF ANY TIME SUBSEQUENT TO THE DATE OF THIS PRESENTATION. NO PERSON AT THE COMPANY NOR ANY OTHER PERSON OR ENTITY ASSUMES RESPONSIBILITY FOR THE ACCURACY AND COMPLETENESS OF THIS PRESENTATION. NEITHER THE COMPANY NOR ANY PERSON OR ENTITY IS UNDER ANY DUTY TO UPDATE ANY OF THE INFORMATION IN THIS PRESENTATION AFTER THE DATE HEREOF.

THIS PRESENTATION AND ALL MATERIALS PROVIDED IN CONNECTION HEREWITH ARE STRICTLY CONFIDENTIAL. REPRODUCTION OR DISTRIBUTION OF ANY PART OR ALL OF THIS PRESENTATION IS STRICTLY PROHIBITED.

THIS PRESENTATION IS NOT, AND SHOULD NOT BE CONSTRUED AS, OFFERING MATERIAL OF ANY TYPE AND IS NOT AN OFFER TO SELL OR A SOLICITATION OF AN OFFER TO BUY SECURITIES. SUCH AN OFFER MAY BE MADE ONLY BY THE COMPANY THROUGH THE USE OF APPROVED OFFERING DOCUMENTS, INCLUDING A PROSPECTUS DELIVERED PURSUANT TO AN EFFECTIVE REGISTRATION STATEMENT FILED WITH THE SECURITIES AND EXCHANGE COMMISSION OR AN EXEMPTION THEREFROM.

- **REXP History**
- Geologic Overview: Wasson / Brahaney / Platang One Large System
- Platang Horizontal San Andres Well Performance
- Plans / Potential Going Forward
 - Increased Density Development Drilling
 - CO2 Assessment & Test Horizontal Producers & Vertical Injectors

Riley Exploration Permian (REXP) History

- 2009 Riley management team formed
 - Wolfcamp etal Midland Basin Assets in Howard, Glasscock & Sterling Cos., TX (27,000 net acres)
 - Eagle Ford Assets in Karnes Co. etal, TX (50,000 net acres)
 - CBM assets in Caldwell Parish, LA (30,000 net acres)
- 2012 Partnered with Yorktown Energy Partners & formed Riley Exploration Group LLC (REX)
- 2013 Acquired ~30,000 net acres in Lee, Bastrop & Fayette Cos., TX for Eagle Ford Shale, Chalk & Taylor Sand
- 2015-2016 Acquired interests in Platang field in Yoakum Co., TX & formed Riley Exploration Permian LLC (REXP)
- 2018 Acquired ~40,000 net acres with horizontal SA potential in Lea Co. etal, New Mexico
- 2015-2019 Drilled & completed 50 operated wells plus participated in 56 non-operated wells in Platang

,000 net acres) net acres)

REXP – Horizontal SA Wells in Platang

TH ANNIVERSARY At the New Bush Convention Center in Downtown Midland; Dec 5-13, 2019

334	Year	Operated Wells	Non- Operated Wells	Total Wells
, ³⁷¹	2014	0	1	1
2 390	2015	4	17	21
•	2016	8	6	14
427	2017	11	11	22
BSON K D 442	2018	16	14	30
1001-520) 479	2019 ytd	9	7	16
÷	2019 rem	2	0	2
10				
•	Total Wells	50	56	106

Permian Basin

Wasson / Brahaney / Platang

One Large Oil Accumulation

Wasson / Brahaney / Platang Complex – Base Map

							P	ERMIAN BASIN NORTH	I - Northern Permian	Basin				14						
× * * * * × * * *	12S 38F	15 14	238	239 240	241	*		+	*				*	• 213	212	211	210	[*] 209	208	* 2
×19×	20 21 * *	· .				242	243 244	* 245	* 246	247 *	* 248	249	250 24	1 010			•			
• •	21	22 23	287	286 265	*	****			**	*		. 1	2	252	253	254	₂₅₅	256	257	° 21
30	29 20			*	2.04	283	282 281	280 *	279	278	277	276	275	** *			•		*	
	28	27 • 26	298 🖕	299 300	201	\$	\$	* K*	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			* * *	210 21	4 273	272	¢ 271 ×	270	269	268	26
31	32 32	*		*	301	302	303 304	305 [°]	306	307 [°]	308	309	*	٠	¢	1.	+		*	
	*	34 35	347 × 3	• 146 345	244	*	+ + +	· / / ·	• •	•			*	312	313	* 314	315	316	317	318
• 6	5			* *	344	³⁴³ 3	³⁴² , ³⁴¹	340	339	338	337 .	336 * 3	5	+ + + + + +	•	†1	1	1	ļ	
* •		3	358 36	59 360	****		*	•			É	المسل المسل	-~ 334 · . ↓	333	332	331*	330 *	329	328	327
* 7	8 9	. , ,			361.	362 36	63 [°] 364 [°]	365	366	367	398	369		; 1	* +	· ·			<i>i</i> .	
*	3		403 40	2 * + 401	105	4 . *	· × ×	· · ·	* . * * _*	**** *	4	410	. 371	\$	373	374	375	376	* * 377	* 378
18	17 16				+*	³⁹⁹ , ³⁹	⁹⁸	396	395	394	393	392 391	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		•	+	i			
*	13S 38E	* X 43	9414 \$	416			1113	: 1		· · · ·	U	Plains Unit (A	pache) 350	389	388	387	386	385 [*]	384	383
¹ 19 + + ₂	20 21 22	S	<u>6</u> . //			419	a) (42∩ 1 * (42∩	m	422		424 4	25 426	427		*	۵			* * •	
	4	23 456	455 \$ 454	453	452							÷ • · · ·		428 ¢	429	430	431	32	* 433	434
30 29	9 28 27	Ö				450	• 449		447	446	45 44	* 14 443	J H GIBSON BLKD	444		*		* *	*	1
		465	466 467	468	469	1.11		Dſ		ġ []	Ç Y			441	440	439	438	437	<u>4</u> 36	435
1 32	33 +34	35					472	473	474 Br	475 ahaney l		478	479	480			\$		* *	* *
	*	524	523 + 522	521	520 519		W. Bra	8	valsh)		9 🗄		+ +	460	481	482	483 +	484	485 * *	486
5	4 3								والمسابقة المسابقة ال	14 •		511	510	509	500			*	*	
		633	534 535	536	537 538	539				1			1	+ +	508	\$ \$	506	505	504 *	503 ,
8	9 10		·					541	42 54	18 ÷544	14 <u>545</u>	546	547	* 548	549		•	•	•	4 ° 7 4
		586	\$ <mark>85</mark> 584	♦ 583 5	582 58 <u>1</u>	580	579	JT C					+		040	550	551 (52	553	584
17	16 15	14 •••	· 1 /11.			1 1 1 1		57	7	576	7	* 573	572	571	570	569			* + • ;	
	14S 38E	\$951 .	596 597		i ld	ng.	602.	603		• K ,A			+			505 5	68 x 5	7	566	565
20	21 22	23			Hirl			60.	4 605 *	W. SA Uni 606		608	609	610	611	\$		8.8888	1	
		650 6	49 - 64 8 -	5 47 • _↓ 64	6 645	944	¢ 643. ◆	* •			17	+ 1	÷	la l			a a gga	م مر بر ایرونیو پیر ایر خ	16- 	16
29	28 27	26	1		• •	1111	*		6 40	639	638 	637 🖌	636	· 686 ·	634 + 6	33	in C	3		
		59 66	0 6 61 [*]	662 663	664	665	÷ 666 6	67 469	*			· · · · ·				1	0	86	0 62 •	29
32	33 34	35			- File	41,	12.1	000	≠ 669	670-	671	672	<u>673</u>		675 67	6	1997 8		;	
· · · ·	* • •		712	711 710	709	708	707 707	* 6 705	+					• •				67	9 680	D
5 *	4 3	2	1		1			*	+	703	762	Willar	<u>766 77</u>	699	98 . 69	Benne 696	t Ranch (Oxy)	é .	
	*		725	726 . 727*	1/28	729	730 73	732	. 733			11.	1 🖹			14 9 9 939 9 	1999 () 1997 ()		693	·
8°*	* 9 10	11	*		· · · · ·			<u></u>		1 1 1 34 	- 735 	736	7	4841-1-	\$		Mahane	≥y. 743	<i>K</i>	
			776	775 774	. 773 · 4	772	× 775 770	2	70%	515			* * * * * * * * * *			F			744	-
15	16 15 S 38E	14 * 788	790	*				5		11.11	166 1111 1111	1 ⁶⁵	-1641 4	263 . 76	2	J	t (Oxvi)	/ / /	757	*
20	<u> </u>	787	*	790 791	792	t93/ /	t 794 Rober	ts Unit (Apa	iche)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 798		1	******	177	-	CALL AND			101	
20	21 /22	23 841	* * 840 [°]	020		792	1976 1 1 7 1 1976 1 1 1 1 1 1976 1 1 1 1				2	800 800	801		504		806	807	808	
29		*		839 * 838	837	836	835 . 834	883	8324	831	Ζ.	XAT			1111					
	28 27	26 851 852	853	854 055				- / / / y	1	Cornell	12.11			the second			823	822	821	8
32	22		* /	855	856	857	858 859	860	861	862	863	and a start		¥ ###1.89	1917 - 1919 1939 - 1939 - 19 1939 - 1939 - 1939 - 1939 - 1939 - 1939 - 1939 - 1939 - 1939 - 1939 - 1939 - 1939 - 1939 - 193	1				
	34 3	5 906 905	* • 904	903 002			5		4 4 V		<u></u>		Den	220 Store		869	870	871	872	. 8
			÷		901	900	899 898	897	* 696 ^{/**}	395	894 - 5 X.	200-	ester a lus							
2 ◆	1** * 6 5		6 * / B ^C LR,	A6 7+	34		35A 34	B 86A		al is to	N.	h in the		100		888	887	886	885	88
٠	* •	BENSA19	4 3 B	CRA6 2	1 34	69	69				- Joine	1. Sup		Sec.		28			в PuS	des
11	12		*	· · · · · ·	1	69 *	68 6	3 62	57 *	56		1.00	So the second	44	30	•				
	12 7 8	5	4 3	2	1 + 33	70	67 67.	*	•	- 5		14	1		21 21	26	26 25	24 2	23 24	
+	13			*	*		• 64 • 67	• • • ⁶¹ +	58	55	52	1.992.3	46	43	10 10				· PSL	+
	16'S 39'E	6	7 8	9 * 1	10 * * • 10	71	ee •		• •	L		68 / 1. 1 7 4 1 - 1			10	11	12	13	BLKAC	35
23 *	24	•	*	4	32	*	*	60 4	59	54	53		47.	42 4	1	-				
•••••••••••••••••••••••••••••••••••••••	19* 20	15 +	^{₁₄} °BĽi§A7	12 1	1 14	495	494				7 4 8 4		×	*	9	8	7	6		5
	- Ky		** /	\$	31	A	456	455 ×	418	417	381	38Q	345	344 30	9 308	076		•		
UNFERENCE	29	16 ^{°°} 1	7 • 1	8 * 20	•	496	493	1. 1. 1	1.1.1.1	1.	• •			* •		2/5	274	241	240	
ANNIVERS	SARV						40/	454	419	A16								+		1

Secondary/Tertiary Units

- 1. Denver Unit (Oxy)
- 2. Cornell Unit (XTO)
- 3. Roberts Unit (Apache)
- 4. Willard Unit (Oxy)
- 5. ODC Unit (Oxy)
- 6. Bennett Ranch Unit (Oxy)
- 7. West San Andres Unit (J Cleo Thompson / REXP)
- 8. West Brahaney Unit (Walsh)
- 9. Brahaney Unit (Apache)
- 10. Plains Unit (Apache)

Wasson / Brahaney / Platang Complex – Structure Map

CONFERENCE

Secondary/Tertiary Units

- 1. Denver Unit (Oxy)
- 2. Cornell Unit (XTO)
- 3. Roberts Unit (Apache)
- 4. Willard Unit (Oxy)
- 5. ODC Unit (Oxy)
- 6. Bennett Ranch Unit (Oxy)
- 7. West San Andres Unit (J Cleo Thompson / REXP)
- 8. West Brahaney Unit (Walsh)
- 9. Brahaney Unit (Apache)
- 10. Plains Unit (Apache)

Platang - A Continuation of Wasson & Brahaney Fields

Platang is a continuation of the Wasson & Brahaney accumulations Long (150 ft+) mobile oil columns are rare outside of existing fields Platang has several billion barrels of oil ulletin place

Platang has a single, unswept oil column with no ROZ

•

- \bullet
- ullet

Did not lose oil (and may have gained oil) during structural tilting

No evidence of fresh water sweep (high brine salinity, FWL is not steeply dipping)

Core data & high oil cuts from Horizontals near structural /

stratigraphic trapping support that part of Platang contains "Conventional and Transition Zone Pay"

Platang Producing Interval - ROZ or Transition Zones?

Water Distribution and Water Cut Curves for San Andres Dolomite Reservoirs containing wide variations in porosity and permeability often flow water at great distances above the zero capillary pressure level, and the reservoir acts as if it were a large transition zone. At any selected elevation, rock of certain permeability and porosity flows only oil, other samples flow only water, and some samples flow both fluids.

The influence of permeability on initial water distribution and water cut is illustrated for a high and low permeability sample.

The special core graph indicates the gradual increase of interstitial water saturation with depth, and the corresponding increase in water cut for zones of equal flow capacity. Source: "Fundamentals of Core Analysis", Core Lab, 1977

Example Calculation @ S _w = 50%						
 Low Permeability Kro = .45 	 High Permeability Kro = .07 					
• Krw = .04	• Krw = .18					
 => Oil cut ~92% 	• => Oil cut ~28%					

Platang – Type Log

Low Permeability Seal

Near Irreducible Water Zone - High Oil Cut

Transition Zone Oil & water production (NOT ROZ)

Free Water Level – 100% Wet

Wasson / Brahaney / Platang Complex – Cross-Section

ROZ – Created When Oil From Original Column Is Removed

- Caused by structural movement oil spill point or post movement recharge
- **Results in:**

TH ANNIVERS

- Reduced or absent moveable oil column
- Column of swept oil at or near residual conditions
- Different oil saturation profile (mostly flat) vs transition zone (decreasing with depth)

Most CBP – Mobile Oil Column + ROZ W Seminole San Andres Lith Por Sat Type Log Low Permeability Seal **Near Irreducible Water** High Oil Cut **Transition Zone Oil & water production Present Day FWL** ROZ Mostly water production **Free Water Level** RILEY PERMIAN

Platang - Horizontal San Andres Well Performance

.....Geology Dominates All Else

Wasson-Brahaney Field – Platang Is An Extension of This Field Complex

The San Andres is a proven *Conventional Reservoir* that has been producing since the 1920s. Wasson & Brahaney Field Complex have produced +2.3 billion barrels of oil

15

CONFERENCE

~200 horizontal wells have been drilled within the "Extended Field" boundary with excellent results

- Avg ~590 mbo EUR
- 4 wells < 250 mbo EUR
- ~42 horizontal wells drilled outside
- the "Extended Field" boundary
 - Low EUR's (20-100 mbo)
 - 2 wells > 350 mbo EUR

Platang – Quality Production Matches Oil Thickness....

Wasson / Brahaney / Platang Complex – San Andres Production

Source: IHS Info 2019-11

17

Platang San Andres Horizontal Development - Observations

- Horizontal well performance has <u>continued to improve over time</u> •
 - Early CaSO₄ scale problems
 - Infrastructure limitations (water disposal, electric, gas....) lacksquare
 - Completion practices (casing size, frac design....)
- High productivity wells ullet
- Good average oil cut, but varies within field (average 18%) \bullet
- Oil cut improves over several weeks to months and stabilizes •
- Long life, shallow decline performance •
- Originally developed on 4 wells/section (1,320' spacing equiv to 40 acre • vertical spacing east-west)
- Very encouraging infill development performance to date

Platang: EUR Is A Function Of Total Fluid EUR + Oil Cut

Platang: EUR Is A Function Of Total Fluid EUR + Oil Cut

Platang: Peak Oil IP30 Rate

Platang: Relationship of Oil IP30 to Oil EUR/ft

- Many high productivity wells
- Well productivity exceeds lift capacity for a few months to a couple of years
- Many wells have not been pulled down aggressively
- Synergy to offset wells help drawdown & increase both oil cut and rate
- Completions (frac size, lateral placement, clusters / stage, etc) affect early well productivity
- Early CaSO₄ scale issues impacted some wells prior to interventions & preventive treatments

Example of IP30 & EUR – Why The Disconnect?

Example: Shiprock 638 3H High productivity well in East end of Platang

Produced @3,000 bfpd (rate constrained)

IPR showed well capable of >6,000 bfpd

Result was low IP30 (~135 bopd), but

Well is still not pumped off after 2 ¹/₂

Platang: Producing BHP at 1st Oil

Platang: Relationship of 1st Oil to Producing BHP

• No recognizable trend

Platang: Relationship of 1st Oil to % Frac Load Recovered

- Definite relationship to % Frac Load Recovery does not require significant psi drawdown
 - Function of relative permeability •
 - Remember Platang is dominately a transition interval, not ROZ 26

Platang: 1st Oil as % Frac Load Recovered

Platang: 1st Oil as % Frac Load Recovered – Bi-modal Distribution

28% of wells make oil very early (<20% frac load recovery).... Why? Structural / stratigraphic location in proximity to Brahaney field Includes infill (child) wells w/ sufficient initial (parent) well production \bullet

22% make oil after 100% load recovery

- High productivity / permeability wells \bullet
- Complex stratigraphy & relative permeability variations

Platang: 1st Oil as % Frac Load Recovered – Bi-modal Distribution

Platang: Relationship of #'s Frac Sd vs Oil EUR/ft

- Poor correlation of #'s frac sand to Oil EUR/ft
- Other factors impact efficiency (sand distribution, # clusters / stages, frac spacing, etc)

REXP Plans / Potential Going Forward (1)

Increased Density Development Drilling

San Andres "Discontinuity" – Laterally and Vertically

Most waterflood projects in west Texas carbonate reservoirs were originally implemented using peripheral patterns, which required good lateral and vertical pay continuity to be effective much beyond the outermost row of producing wells. Performance reviews of these projects, coupled with geologic studies¹⁰, (Fig. 5) showed that west Texas carbonate reservoirs typically showed two types of heterogeneity:

(1) lateral discontinuity of porous (pay) intervals,

(2) barriers to vertical flow that prevented movement of fluids in other than a horizontal direction.

These "new" concepts led to widespread infill drilling and realignment of waterflooding patterns to line-drive and/or five- and nine-spot patterns. The various units of the Wasson field, including the Bennett Ranch unit, typically have this history.

The concept of discontinuous porosity zones

32

Source: DOE/MC/08341-39 "Field Project to Obtain Pressure Core, Wireline Log, & Production Test Data for Evaluation of CO2 Flooding Potential" (Bennet Ranch Unit – Wasson Field), May 1982

Denver Unit (Wasson Field) – San Andres Heterogeneity

Variability of Porosity & Permeability With SA Rock Type

Fig. 7—Relationship between porosity, permeability and rock types.

Source: SPE-13132 – "Effect of CO2 Flooding on Dolomite Reservoir Rock, Denver Unit, Wasson (San Andres) Field, TX"; Sept 1984

Thin Section Photos of Varying Porosity Types in SA

Fig. 6-Thin section photomicrographs of pore types from CO2 pilot area: (A) anhydrite, (D) dolomite, (P) porosity,

San Andres Historical Development in Wasson / Brahaney / Platang

- 1970's began infill drilling to 20 & 10 acre spacing
- 1983 CO2 flooding began

160 Acre Spacing – 4 Wells/Section

- Downspacing testing 5 to 8 wells / section
- Equiv to 10 Acre E-W Spacing

Incremental Recovery - Increased Density SA etal Projects

=> Downspacing from 40 to 10 acre vertical spacing yields +6.5% incremental recovery

Based on 15 Permian Basin SA / **Grayburg / Clearfork Infill Drilling**

Adair/San Andres Block 31/Block 31 Fuhrman-Mascho/Block9 Fullerton/Clearfork Levelland/N.C.Levelland Means/San Andres **Ownby/San Andres** Robertson/Clearfork Russell/Clearfork Shafter Lake/Grayburg Triple-N/Grayburg Wasson/Cornell Wasson/Denver Wasson/Willard West Goldsmith/West Goldsmith West Seminole/San Andres

Incr Rec from Incr Density SA Drlg - Dune Field, Crane Co. TX

CARLES CO CARLES
ALDER WS COT MEDICATE FIRM
Building the second sec

Table 5

Oil and Gas Recovery From Blanket Infill Development - Dune Field, Section 15

Deres 1 erreret		Incremental	Perce	Incremental Recommendate Hundrosserbore						
(ac	evelopment Strategy res/producer)	Oil (MB)	<u>Oil</u> (MB)	<u>011</u> <u>00IP</u> (MB) (%)		OAGIP (%)				
	80 to 40	1,602	1,316	4.4	731	6.9				
	40 to 20	1,425	1,199	4.0	694	6.5				
	20 to 10	1.137	1.041	<u>3.4</u>	<u>649</u>	<u>6.1</u>				
v	Total	4,164	3,556	11.8	2,074	19.5				

=> Downspacing from 40 to 10 acre vertical spacing yields <u>+7.4% incremental recovery</u>

Incr Rec from Incr Density SA Drlg - Dune Field, Crane Co. TX

=> Downspacing from 40 to 10 acre vertical spacing yields <u>+10-20% increased reservoir continuity</u>

Source: SPE-18929 March 1989

Figure 4. Grainstone-dominant and nongrainstone floodable continuity curves, Dune Field, Section 15.

Platang – SA Incr Density Horizontal Wells – Results to Date

- 10 increased density horizontal tests (12 wells) to date with REXP WI wells ullet
 - 7 more tests permitted / planned in near term
 - 5 to 8 wells / section spacing tests
 - 1 to 18 months historical data
 - 10 wells have sufficient data for forecasting EUR
- No negative impacts to offset "parent" well rates or EUR seen to date
- Increased density "child" wells performance is very good general observations:
 - Increased IP30 oil rates
 - Increased oil cut
 - Decreasing time to see 1st oil production
 - Decrease in water rates on several wells vs "parent"
 - Decrease in initial pressure on several wells vs "parent"
 - Occasional, minimal short term frac interference with "parent"; temporary
- **VERY POSITIVE** early; significant incremental oil is being recovered (consistent with historical San Andres vertical development on tighter spacing), but future acceleration from "parent" wells is also likely. Consideration of acceleration must be incorporated into reserves analysis to avoid double dipping reserves from "parent" and "child" wells

Platang - Increased Horizontal SA Density Drilling Example

- E-W spacing equivalent to ~10 acre vertical well spacing (678' between wells)
- Cumulative production: •
 - Combined 410 mbo from 2 "parent" wells (4½ years) lacksquare
 - 125 mbo from "child" well (1¹/₂ years) lacksquare
- Quicker oil, higher oil rate, better oil cut & no apparent interference between wells to date lacksquare
- Similar results seen in other increased density tests ${\color{black}\bullet}$

REXP Plans / Potential Going Forward (2)

CO₂ Assessment & Test

Horizontal Producers & Vertical Injectors

Permian Basin CO₂ **Pipeline Infrastructure**

Denver Unit Historical Performance (2.8 billion bbls OOIP)

- Primary EUR 300 mm bbls oil; 11% OOIP
- Secondary EUR 550 mm bbls oil; 20% OOIP combined waterflood & infill drilling
- Tertiary EUR 550 mm bbls oil; 20% OOIP 300 mm bbls cum + 150 mm bbls remaining
- Total EUR 1.4 billion bbls oil => <u>50% recovery of OOIP</u>

aterflood & infill drilling um + 150 mm bbls remaining

REXP CO₂ Initial Study

- Initial look began in 2016 \bullet
 - Joint study with Baker Hughes ullet
 - Detailed geology & reservoir characterization •
 - Reservoir Simulation history matching horizontal well performance & forecasting
 - CO₂ efficiency evaluated with horizontal producers & vertical injectors
 - <u>Results indicated potential for +2X to +5X over primary</u> lacksquare

REXP CO₂ Pilot Feasibility Study – West San Andres Unit

- Study in progress
- WSAU unitized by Mobil in 1968
 - Vertical development
 - 40 acre spacing
 - Completed only upper SA
 - Minimal waterflooding
- Design for 2 CO₂ patterns
 - 3 horizontal producers (1-1¼ mile)
 - 8 12 vertical injectors
- Combining results of joint REXP/Baker study with Wasson historical results
- Incorporating costs, expected results & economic feasibility

