Advanced Recovery in Unconventional Reservoirs

Luncheon Keynote by Todd Hoffman

Montana Tech 25th Annual CO₂ Conference Thursday Dec 12th, 2019

Outline

Overview of EOR in Unconventional Reservoirs

Potential Issues/Pitfalls – Things to consider

Economics & Investments

Unconventional Reservoirs

also known as (aka)

- Shale Oil / Shale Gas
- Resource Reservoirs
- Source Rock Reservoirs
- Light Tight Oil (LTO)

Characteristics

- Source rock & reservoir rock
 are the same or nearby
- Extremely low permeability
- Requires long horizontal wells and multi-stage hydraulic fracturing

Elm Coulee Bakken (Montana)

 R. Findley & Lyco Energy drilled first unconventional oil wells in Elm Coulee in late 1999 - fractured in 2000

Bakken – Expanded Development

 In late 2000's, development expanded to North Dakota side of the Bakken

Eagle Ford - Development

Unconventional Oil Reservoirs

North America Formations

- Bakken
- Eagle Ford
- Niobrara/Codell
- Utica
- Montney
- Permian
- STACK/SCOOP
- Duvernay
- others ...

Unconventional Oil Success - US

- Increased oil rate in the US is from unconventional oil reservoirs
- Trillions of barrels of oil resource in unconventional reservoirs

Unconventional Oil Opportunities

Average Eagle Ford Oil Production

- High initial rates, but rapid decline
- Low recovery factors (5-10%)

Need for EOR in unconventionals is apparent

Options for EOR in Unconventionals

<u>Gas</u>

- CO₂
 - Source may be issue
- Rich natural gas
 - 60% C₁, 40% C₂+
 - Behaves similar to CO₂
- Lean natural gas
 - − 90+% C₁, <10% C₂+
 - Vapor extraction
- Miscible / Immiscible

Water / Surfactants

- Injectivity doesn't appear to be a concern
- Matrix imbibition
- Surfactants may help
 - -Change wettability
 - -Find low cost option?
- Low salinity

Initial Simulation Study - Bakken

•Grad student at Montana Tech •Summer intern at Continental (Shoaib, 2009) SPE 123176

- 4 Sections (2 mi. x 2 mi.)
- 8 layers including upper shale and middle member
- Multiple CO₂ injection cases

- Simple model
- Indicates added

recovery

Early Pilots - CO₂ Injectivity - Bakken

- > 2 Pilot tests (one in MT and one in ND)
- Injection rates / pressures
 - ~1500 Mscf/day @ 2000-3000 psi
 - 30-45 days inj., 10-20 days soak, ~ 3 months prod.

EOR in UR - Research

- Laboratory / Experiments
 - Gas Injection
 - Surfactants
- Analytical Analysis

Brine v. surfactant

Adekunle et al, 2013

Pressure

Kurtoglu, 2013

6000

Nguyen et al, 2014

- Reservoir Modeling / Flow Simulation
 - Generally, models showed success
 - Capturing true EOR response?

EOR Pilots in the Bakken

Continuous Water Injection – Bakken Pilot

WelLB1

Inj1 Inj2

2014

2012

Year

 $\sim 2300^{\circ}$

Injector

Pattern 1 4 1

2016

2018

WellA1

~2 mi

~2300'

> Injection rates

- ~1350 bbl/day for 8 months
- then shut in for 6 months

Continuous Natural Gas Injection - Pilot

Injection rates

~1700 Mscf/day for 2 months

Most encouraging of Bakken pilots

Also looked at offset wells North and South of injection well

• All wells have increased oil production (2 wells complicated by frac hits)

Injection Pilot - Flow Simulation Model

SPE 190221

6,000 ft

Injection Pilot - Prediction Cases

- Continuous vs. Huff-n-Puff
- Water vs. Natural Gas
- Injection Rate Sensitivity
- Cycle Change Frequency

Huff-n-Puff :: ~20% better than primary

Continuous :: ~20% worse than primary

Injection Pilot - Surfactants

Surfactant Concentration

- ~1500 ppm
- Low salinity brine
- > 2 weeks of injection
- > 4 months shut in (soak)
- > Oil rate increased from ~80 bbl/d to 180 bbl/d
- Sustained for 1.5 years so far ...
- Increase EUR by 25%

EOR Pilot Tests - Eagle Ford

Eagle Ford - Huff-n-Puff EOR

- Reported in investor relations presentation
- But no data presented

- Started at end of 2012
- Lean gas Inj. (90-95% C₁)
- 3 cycles in 2013

Multi-Well - Huff-n-Puff EOR

Increase in oil production is evident

Eagle Ford Huff-n-Puff Pilot D: 4 Wells

 After 3 years of injection, recovery is more than 30% greater than primary

- 4 isolated wells
 - injecting/producing in all
- Cleanest indication of improved recovery

Eagle Ford Summary

- EOG is at 150+ wells with Huff-n-puff gas injection
- At least 4 other companies have injected in EF, and many more are planning pilots
- Early indications look promising, but issues? ...

Other Basins

- DJ Basin / Niobrara
- SCOOP in OK
- Montney (future?)
- Others...
- Permian (next slide)

Permian

Permian

- Chevron
- Laredo / GTI
- EP Energy
- Oxy
 - Delaware Basin (2 NM)
 - Midland Basin

Potential Issues/Pitfalls – Lessons Learned

- Conformance Control
 - Building Pressure
 - Shutting off 'Big Water'
- Importance of the Primary Completion
- Compressors/Equipment
- Access to Gas
- Land Issues
- Injection Implementation

Building Pressure

Force gas to go back into solution

• Miscibility Pressure (kind of...)

<u>Aside</u>

Black Oil v.
 Gas Condensate

Conformance Control – Bakken

Conformance Control – Eagle Ford

 Possible Solutions: Isolate cluster of wells, pressure containment strategies.

SPE 195240

Importance of Primary Completion

- 1. Lots of surface area (10-100 million ft²)
- Better for primary, too

2. Not intersecting with offset wells

Compressors

Jan. 2014

Eagle Ford : Pilot Test A Jan. 2015

 Get the most amount of gas in the ground with shortest shut-in times, above miscibility pressure

Compressors & Equipment

<u>Compressors</u>

Huge Machines

- 6000-9000 psi outlet pressure
- 5-15 Million SCF/day outputs
- Largest Expense
 - Multi-million dollars
 - Maximize usage (>1 pattern)
- Delivery Date
 - 6-9 months out (coming down)

Other Equipment

- Wellhead (5K enough)
- Gas-tight tubing connections
- Packers, etc.
- Gas handling
 - Existing equipment sizes
 - Sour gas

Access to Gas / Land Issues

<u>Gas</u>

- Slowed and stopped projects
- Produced gas often is not enough
- Compressors need 1000
 psi suction pressure
 - Booster compressor or line
 pressure

<u>Land</u>

- Slowed and stopped projects
- Need buy-in from royalty owners, lease partners, & offset acreage operators
- Allocate gas: state for taxes & royalty owners
 - Need industry consistency

Injection Implementation

- CO₂ vs. Natural Gas vs. Water
- Continuous vs. Cyclic (Huff-n-Puff)

- Longitudinal Fracs
- Perm. ~0.1 1 md
- Continuous WAG
 Injection Scheme

Economic Analysis and Investments

Eagle Ford Economic Example

Added Value

• Comments

Eagle Ford Economic Analysis

- Predicted out for 20 years
- Similar to reported expected recoveries (1.3x 1.7x)

- Predictions are based on extrapolating decline curves
- Inject 2 months; produce 2 mo.

Eagle Ford Economic Analysis

<u>Inputs</u>

- CapEx: \$1 million/well
 - compressors, flowlines, workovers, etc.
- Injection rate: 2 million scf/day (\$2.50/Mscf)
 - 3 month fill up time
 - 20% make up gas during injection time
- OpEx: 10% of injected gas compressor fuel
- 20 year predictions Discount rate: 15%

<u>Results</u>

Oil Price	\$35	\$50	\$65
NPV	-\$1,300,000	\$1,700,000	\$4,700,000
IRR	%	28.1 %	44.1 %
Payback	yrs	1.8 yrs	1.2 yrs

Comments

- Marginally economic
- More than half of the cost is gas fill up
- Efficiency gains should be realized over time

Upside Potential

Lifecycle of Unconventional Wells

- 1. Acreage costs: ~\$1-4 million / well
- 2. Well construction costs: ~\$5-8 million / well
- 3. Primary Production: if EUR is ~300,000 STB, ~\$15-18 million, with opex and time value, marginal well
- EOR Production: if EUR goes to ~450,000 STB for ~\$1 million in capex and ~\$1 million in gas costs, that can improve the economics*

*some companies in EF are adding EOR production in private equity proposals

Economics of EOR in Unconventionals

- Operational efficiencies will improve economics
- Start injection earlier, but after some depletion (~1 yr)
- May not be as economic as new drills in Tier 1 acreage (but on par with Tier 2 acreage)
- Other EOR methods may be more economic
- Knowledge from pilots is essential to increasing profitability

Conclusions

- Potential is Enormous for EOR in Unconventionals
 - Huge volumes in place; Low recovery factor
- Natural gas huff-n-puff works wells in Eagle Ford
 - Large scale field development is occurring
- Other basins still in testing period

– e.g Permian, Bakken, SCOOP, Niobrara ...

• Ultimately, other methods may prove to be better

– Water, CO_2 , surfactants, continuous injection, etc.

- Significant work to be done
 - Lab, modeling, and field trials

Questions/Comments

Thank you!

Contact information: Todd Hoffman thoffman@mtech.edu

25th Annual CO₂ Conference

