Enhanced Recovery of Shale Oil: Eagle Ford Shale and Other Shale Basins

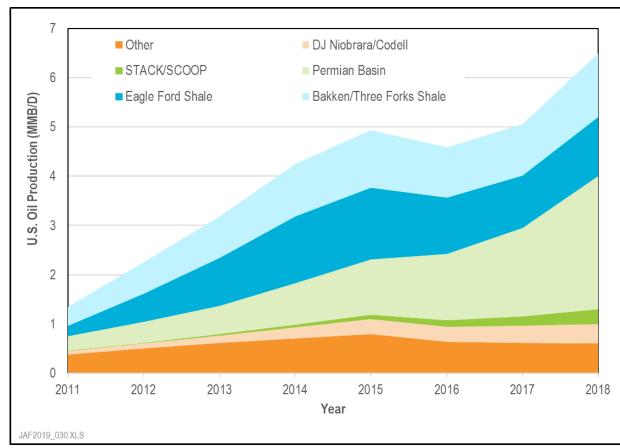




### Enhanced Recovery of Shale Oil: Eagle Ford Shale and Other Shale Basins

Prepared for: Midland CO<sub>2</sub> Conference Week 2019 - Theme Session 1 Unconventional Reservoir Cyclic Injection Projects

Prepared By: Vello A. Kuuskraa, President Advanced Resources International, Inc. Arlington, VA


December 12<sup>th</sup>, 2019 25<sup>th</sup> Annual  $CO_2$  & ROZ Flooding Conference Midland, TX



| JAF2019\_090.PPT | December 5, 2019 | www.adv-res.com



# U.S. Tight/Shale Oil Production (2011-2018)



The pursuit of the Bakken Shale with long Hz wells launched the modern tight/shale oil era.

Tight/shale oil production reached the 1 MMB/D threshold in 2011 and has grown to 6.5 MMB/D in 2018.



Source: Advanced Resources International's Tight Oil Database, 2018; Drilling Info, 2018.



## Changes in Eagle Ford Shale Well Performance

Shale oil well performance has been improving, as "best well completion practices" become widely used.

| Tight Oil<br>Play Areas                       | Well Performance<br>(EUR, MB) |      |             | Average Lateral Length<br>(ft) |       |             |
|-----------------------------------------------|-------------------------------|------|-------------|--------------------------------|-------|-------------|
|                                               | 2016                          | 2018 | %<br>Change | 2016                           | 2018  | %<br>Change |
| <b>Eagle Ford Shale</b><br>Oil Dominant Areas | 340                           | 370  | +9%         | 6,300                          | 7,000 | +11%        |
| Karnes Trough                                 | 430                           | 420  | (2%)        | 4,800                          | 5,300 | +10%        |

Source: Advanced Resources International's Tight Oil Database 2018; DrillingInfo, 2018.

- However, once shale oil "sweet spot" areas become increasingly developed, well performance can begin to decline, as illustrated by the mature Karnes Trough area of the Eagle Ford Shale.
- As such, new technologies are needed to maintain progress in shale oil recovery and its economic viability.





# Shale Oil Recovery Efficiencies: Primary (Pressure Depletion) Recovery

Large volumes of Original Oil In-Place (OOIP) exist in domestic shale oil basins. However, oil recovery efficiency in shale oil basins, using primary (pressure depletion) recovery methods, is low – ranging from 5 to 9 percent of OOIP -- in selected areas of three shale oil formations evaluated by Advanced Resources.

As such, a large remaining shale oil in-place target exists for enhanced recovery.

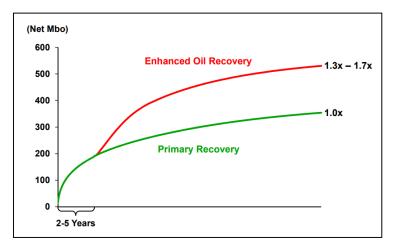
| Shale<br>Formation | Total<br>OOIP<br>(Billion<br>Barrels) | Pattern<br>Area<br>(Acres) | OOIP<br>(MB) | Estimated<br>Ultimate<br>Recovery<br>(MB) | Recovery<br>Efficiency<br>(%OOIP) |
|--------------------|---------------------------------------|----------------------------|--------------|-------------------------------------------|-----------------------------------|
| Eagle Ford         | 140                                   | 112                        | 4,620        | 372                                       | 8.1                               |
| Bakken             | 91                                    | 313                        | 5,240        | 466                                       | 8.8                               |
| Wolfcamp (Bench B) | 268                                   | 180                        | 7,630        | 434                                       | 5.3                               |





## Publicly Available Information on Field Trials of Enhanced Recovery from Shale Oil Formations

A handful of field pilots are testing (or are planning to test) the viability of injecting gas for increasing tight oil recovery efficiency over primary depletion methods.


#### Active and Planned EOR Field Projects: Eagle Ford Shale



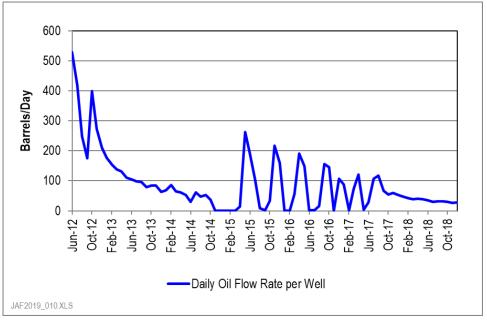
Source: Chesapeake Energy, 2018.

Except for high-level information from EOG Resources on the performance of some of their cyclic gas injection field projects, little information on the actual performance of these field pilots exists in the literature.

#### Primary versus Enhanced Oil Recovery: Eagle Ford Shale



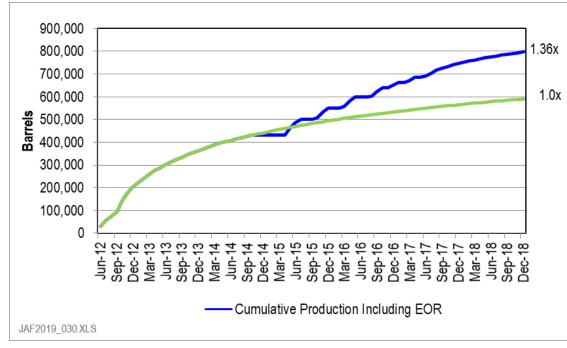
Source: EOG Resources, 2017.






## Primary and Cyclic Gas Injection: Four Martindale L&C Lease Wells

Advanced Resources International (ARI) analyzed the performance of a 4-well cyclic gas injection pilot in LaSalle County, initiated in November 2014.


#### Oil Recovery from Primary and Cyclic Gas Injection – Average Well



- The four wells had been on primary production for about 2.5 years and together had produced 430,000 barrels of oil.
- To provide a baseline for this cyclic gas injection pilot, ARI created a primary oil recovery "type well" for this lease.
- Four longer-term gas injection and soak cycles and three shorter gas injection and soak cycles were conducted between April 2015 and October 2017.
- The oil production response was positive in each of the seven gas injection cycles, albeit with declining peaks in oil production.

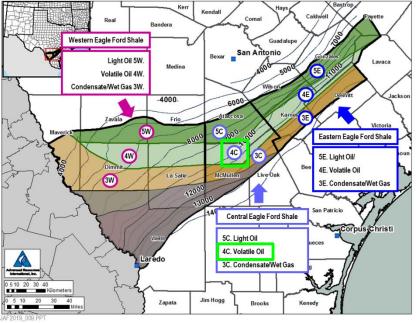


# Primary and Cyclic Gas Injection: Four Martindale L&C Lease Wells (Cont'd)



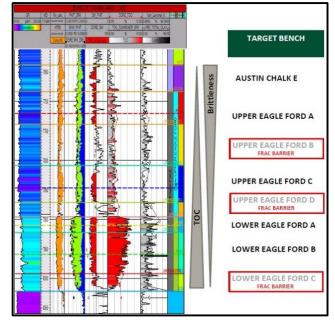
Source: Advanced Resources International, 2019.

During three plus years of cyclic gas injection, the four Martindale L&C lease wells recovered a total of 370,000 (in addition to the 430,000 barrels of primary recovery), with 210,000 barrels as incremental oil from cyclic gas injection for an uplift of 1.36x.


The 1.36x uplift in oil recovery due to cyclic gas injection is within the range of uplift values reported by EOG Resources.



## **Eagle Ford Shale Study Area**


The Advanced Resources' reservoir simulation Study Area is located in north-central McMullen County.

**Eagle Ford Shale Oil Dominant Play Areas** 



Source: Advanced Resources International, 2018.

Upper, Middle and Lower Units of the Eagle Ford Shale



Source: Sanchez Energy, 2017





## **Study Area Reservoir Properties and OOIP**

#### Lower Eagle Ford Shale Study Area Reservoir Properties

| <b>Reservoir Properties</b>  | Units        |  |  |
|------------------------------|--------------|--|--|
| Pattern Area                 | 112 acres    |  |  |
| Well Pattern Dimensions      |              |  |  |
| <ul> <li>Length</li> </ul>   | 7,500 ft     |  |  |
| <ul> <li>Width</li> </ul>    | 650 ft       |  |  |
| Depth (to top)               | 10,000 ft    |  |  |
| Net Pay                      | 120 ft       |  |  |
| Porosity                     |              |  |  |
| <ul> <li>Matrix</li> </ul>   | 9%           |  |  |
| <ul> <li>Fracture</li> </ul> | 0.1%         |  |  |
| Oil Saturation               |              |  |  |
| <ul> <li>Matrix</li> </ul>   | 80%          |  |  |
| Fracture                     | 90%          |  |  |
| Saturation Gas/Oil Ratio     | 1.2 Mcf/B    |  |  |
| Formation Volume Factor      | 1.64 RB/STB  |  |  |
| Pressure                     | 6,425 psia   |  |  |
| Temperature                  | 260 º F      |  |  |
| Bubble Point                 | 3,456 psia   |  |  |
| Formation Compressibility    | 5 * e ⁻⁰/psi |  |  |
| Oil Gravity                  | 43º API      |  |  |

Given the geologic and reservoir properties, the Study Area pattern contains 4.62 million barrels of original oil in-place (OOIP) and 5.54 Bcf of original gas in-place (OGIP).

- OOIP = (112A \* 120 ft) \* 7758 B/AF (0.091 \* 0.80/1.64)
- OOIP = 13,440 AF \* 344 B/AF = 4.62 MMB
- OGIP = (4.62 \* MMB) \* (1.2 Mcf/B) = 5.54 Bcf





# Study Area "Type Well"

Study Area "Type Well" Oil Production



Source: Advanced Resources International, 2019.

The Study Area "type well" represents the composite performance of 188 Hz wells drilled in 2017 and early 2018.

The "type well" in the Study Area has a spacing of 8 wells per 640 acres and a Hz lateral of 7,400 feet. It has an estimated 30-year oil recovery of 372,000 barrels.



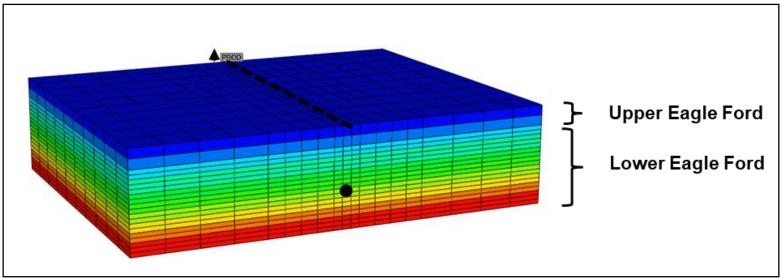


# **Eagle Ford Shale Oil Composition**

#### Lower Eagle Ford Shale Oil Composition Data

|      | GOR (scf/Bbl) |        |                        |        |  |  |
|------|---------------|--------|------------------------|--------|--|--|
|      | 500           | 1000   | 1200<br>(Interpolated) | 2000   |  |  |
| C1   | 31.231        | 44.522 | 47.929                 | 56.447 |  |  |
| N2   | 0.073         | 0.104  | 0.112                  | 0.132  |  |  |
| C2   | 4.314         | 5.882  | 6.284                  | 7.288  |  |  |
| C3   | 4.148         | 4.506  | 4.598                  | 4.827  |  |  |
| CO2  | 1.282         | 1.821  | 1.960                  | 2.306  |  |  |
| iC4  | 1.35          | 1.298  | 1.285                  | 1.251  |  |  |
| nC4  | 3.382         | 2.978  | 2.874                  | 2.615  |  |  |
| iC5  | 1.805         | 1.507  | 1.431                  | 1.24   |  |  |
| nC5  | 2.141         | 1.711  | 1.601                  | 1.325  |  |  |
| nC6  | 4.623         | 3.28   | 2.936                  | 2.076  |  |  |
| C7+  | 16.297        | 11.563 | 10.350                 | 7.316  |  |  |
| C11+ | 12.004        | 8.94   | 8.078                  | 5.924  |  |  |
| C15+ | 10.044        | 7.127  | 6.379                  | 4.509  |  |  |
| C20+ | 7.306         | 4.762  | 4.186                  | 2.745  |  |  |

Source: Modified by Advanced Resources Int'l from Gala, D., and Sharma, M., 2018.

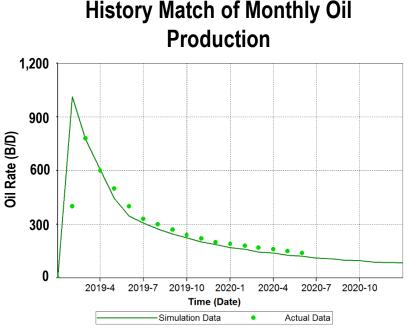

The oil composition data reflects a saturation gas/oil ratio of 1,200 scf/B.



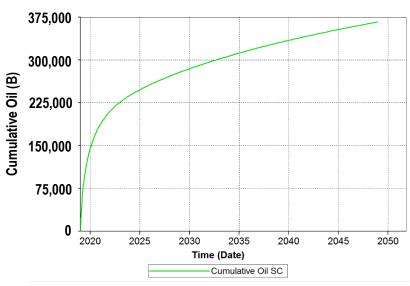
# **Reservoir Model**

The reservoir property and oil composition values (shown previously) were used to populate the compositional reservoir model (GEM) and its 3,800 grid blocks.

#### **Reservoir Model and Grid Blocks Used for Eagle Ford Shale Study**






## History-Matching Oil and Natural Gas Production

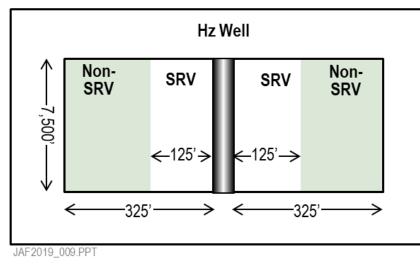
Reservoir simulation achieved an excellent history match with the "type well" for the Study Area, providing a solid base of information on reservoir properties for evaluating cyclic injection of gas for enhancing oil recovery.



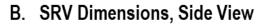
Source: Advanced Resources International, 2019.

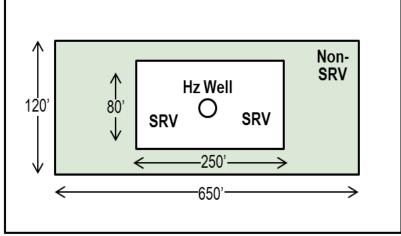



**Projected 30 Years of Primary Recovery** 







# Capturing the Impact of Hydraulic Stimulation


<u>SRV Dimensions</u>. The Stimulated Reservoir Volume (SRV) dimensions for the Study Area well, based on history matching of well performance, are illustrated below.











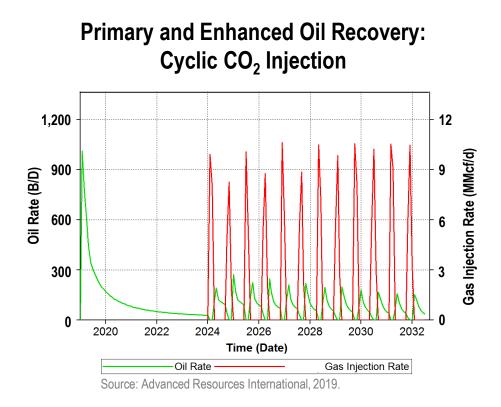
JAF2019\_009.PPT





## Capturing the Impact of Hydraulic Stimulation

Matrix and Fracture Permeability. The matrix and fracture permeability values from history matching of well performance (along the SRV dimensions), were used to history match the Eagle Ford Shale "type well".


#### Permeability Values Used for History Match

|            | Matrix                     |  |  |  |
|------------|----------------------------|--|--|--|
| Non-SRV    |                            |  |  |  |
| Horizontal | 115 * 10 <sup>-6</sup> mD  |  |  |  |
| Vertical   | 11.5 * 10 <sup>-6</sup> mD |  |  |  |
| SRV*       | 85 * 10 <sup>-3</sup> mD   |  |  |  |





# Modeling of Cyclic CO<sub>2</sub> Injection



Cyclic  $CO_2$  injection was initiated in the Study Area well after five years of primary production. At this time, the Hz well had produced 238,000 barrels, about 80 percent of its EUR.

- In cycle one, CO<sub>2</sub> was injected at a constant rate of 10.5 MMcfd for 2 months (BHP limit of 7,000 psia), with a total of 540,000 Mcf of CO<sub>2</sub> injected.
- CO<sub>2</sub> injection was followed by a 2 week soak time and then followed by 6 months of production.
- Eleven additional cycles of CO<sub>2</sub> injection, soak and production followed.



## Performance of Cyclic CO<sub>2</sub> Injection: Full Hz Well

#### Oil Production, CO<sub>2</sub> Injection and CO<sub>2</sub> Production: Full Hz Well

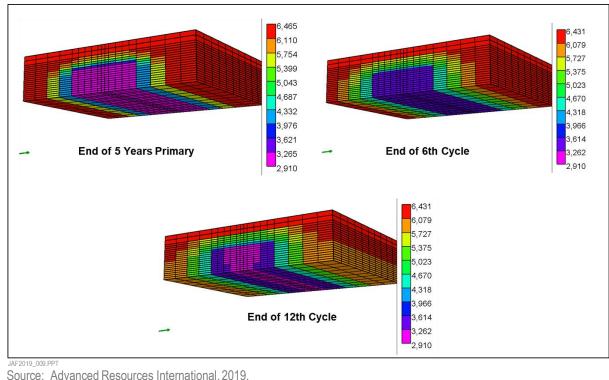
|                                  | Cumulative Oil<br>Production<br>(MBbls) |             | Cumulative<br>CO <sub>2</sub> Injection | Cumulative<br>CO <sub>2</sub> Production |  |
|----------------------------------|-----------------------------------------|-------------|-----------------------------------------|------------------------------------------|--|
|                                  | Total                                   | Incremental | (MMscf)                                 | (MMscf)                                  |  |
| End of 5-year<br>primary         | 238                                     |             | -                                       | *                                        |  |
| End of first cycle               | 262                                     | 16          | 540                                     | 300                                      |  |
| End of 6 <sup>th</sup><br>cycle  | 380                                     | 106         | 3,000                                   | 2,420                                    |  |
| End of 12 <sup>th</sup><br>cycle | 483                                     | 185         | 6,440                                   | 5,600                                    |  |

\*A small volume of CO2 (0.6 MMcf) was produced during primary production, as CO<sub>2</sub> is a minor constituent of the reservoir fluids.

Source: Advanced Resources International, 2019.

The 12 cycles of CO<sub>2</sub> injection provided 185,000 barrels of incremental oil recovery (245,000 barrels less 60,000 barrels from continuation of primary recovery for 8.5 years).

This 12 cycle  $CO_2$  injection project provided a 1.62x uplift to oil production.


((298,000 + 185,000) / 298,000) = 1.62

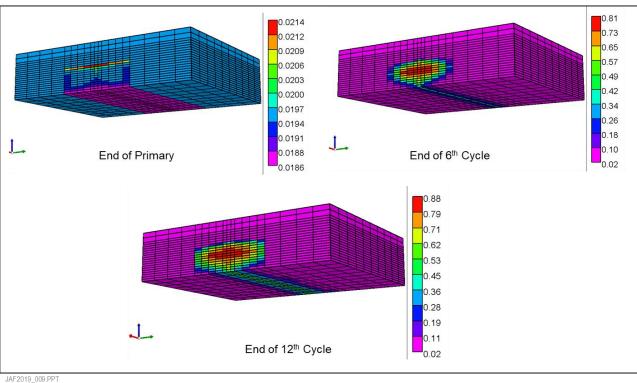




# **Reservoir Pressure Profiles**

Reservoir pressure profiles at the end of primary production shows substantial declines within the SRV matrix and limited pressure declines in non-SRV matrix blocks. Noticeable pressure declines in the non-SRV matrix blocks are evident at end of 6 and 12 cycles of  $CO_2$  injection.

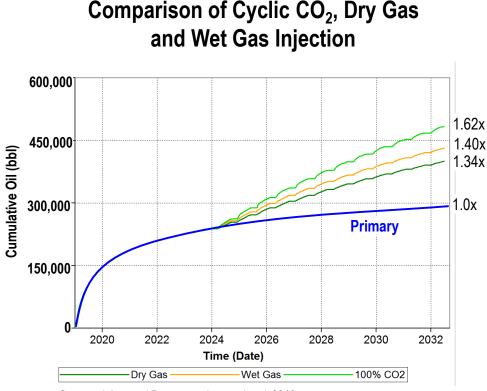



#### Pressure Profiles Primary Recovery and Cyclic CO<sub>2</sub> Injection





# CO<sub>2</sub> Distribution and Storage


At the end of twelve cycles of  $CO_2$  injection and fluid production,  $CO_2$  saturation in the SRV matrix reached 80 percent near the Hz well, declining to 40 to 50 percent at the edges of the SRV.



#### CO<sub>2</sub> Saturation Profiles Following Cyclic CO<sub>2</sub> Injection



## Comparison of Cyclic CO<sub>2</sub>, Dry Gas and Wet Gas Injection



Source: Advanced Resources International, 2019.

Use of cyclic CO<sub>2</sub> provides a significantly higher "uplift" than using dry or wet gas for enhancing shale oil recovery.

| Injection<br>Fluid          | "Uplift" |  |  |
|-----------------------------|----------|--|--|
| • CO <sub>2</sub>           | 1.62     |  |  |
| <ul> <li>Dry Gas</li> </ul> | 1.34     |  |  |
| <ul> <li>Wet Gas</li> </ul> | 1.40     |  |  |





# Performance of Cyclic Gas Injection: Other Shale Oil Basins

Reservoir simulation of cyclic gas injection, using similar methodology as for the Eagle Ford Shale, showed strong improvements in oil recovery from the Wolfcamp (Bench B) and more moderate improvements in oil recovery from the Bakken Shale.

| Shale<br>Formation |              | 13.5 Years of<br>Primary<br>Recovery<br>(MB) | Incremental Due to Gas Injection |          |         |          |         |          |
|--------------------|--------------|----------------------------------------------|----------------------------------|----------|---------|----------|---------|----------|
|                    | OOIP<br>(MB) |                                              | CO <sub>2</sub>                  |          | Dry Gas |          | Wet Gas |          |
|                    |              |                                              | (MB)                             | "Uplift" | (MB)    | "Uplift" | (MB)    | "Uplift" |
| Eagle Ford         | 4,620        | 298                                          | 185                              | 1.62x    | 102     | 1.34x    | 119     | 1.40x    |
| Bakken             | 5,240        | 363                                          | 149                              | 1.41x    | 40      | 1.11x    | 69      | 1.19x    |
| Wolfcamp (Bench B) | 7,630        | 355                                          | 223                              | 1.63x    | 149     | 1.42x    | 169     | 1.48x    |





# **Closing Observations**

Oil recovery efficiencies from shale oil formations are low (5% to 9%) using primary (pressure depletion) practices, leaving behind a large remaining oil in-place target for enhanced recovery.

- In geologically favorable settings, cyclic injection of gas can improve shale oil recovery efficiency by 10% to 60% over primary recovery efficiency depending on type of gas injection and shale formation.
- Cyclic injection of CO<sub>2</sub> provides significantly more incremental oil recovery compared to cyclic injection of dry or wet gas.
- Numerous oil recovery mechanisms are involved in cyclic gas injection, including restoring pressure, viscosity reduction, oil swelling and miscibility.
- However, the geologic setting and field development practices need to be favorable for enabling cyclic injection of gas to achieve significant pressure increases (above MMP for CO<sub>2</sub>) for effective oil recovery.







Office Locations Washington, DC 4501 Fairfax Drive, Suite 910 Arlington, VA 22203 Phone: (703) 528-8420

Knoxville, TN 1210 Kenesaw Ave. Suite 1210A Knoxville, TN 37919-7736

