25th Annual CO₂ Conference

Theme Session III: New Gas Compositions, CO₂ Supplies and EOR Case Histories

Optimization of CO2-Enhanced Oil Recovery with CO2 storage in a Mature Oil Field- FWU Case Study By William Ampomah (PRRC-NMT)

Presented at the 25th Annual CO₂ Conference

Friday Dec 13th, 2019

Bush Convention Center

Midland, Texas

Outline of Presentation

- Introduction
- FWU Reservoir Description
- Reservoir Simulation Model
- Optimization Process
- Conclusions

Outline of Presentation

- Introduction
- FWU Reservoir History
- Reservoir Fluid Analysis
- Reservoir Simulation & History Matching
- Prediction Models
- Optimization Process
- Conclusions

Motivation for this work

- Ampomah et al 2016 (SPE-179528) presented a scenario based model to study different injection strategies effects on oil recovery and CO₂ storage
- Their work showed a possibility of recovering more than 30% of OOIP incremental oil beyond waterflood and storing 75% of purchased CO₂
- This work seeks to use advanced optimization procedure with multiobjective function to improve prediction of CO₂ storage and/or oil recovery

Introduction

DOE Regional Partnerships For Carbon Storage

- 7 Regional partnerships
- Each to inject and store over 1 million tons of anthropogenic CO₂

FWU's Large-scale EOR- Carbon Capture, Utilization and Storage (CCUS)

As of June 2019;

- 1,359,520 metric ton of CO₂ purchased
- 1,281,224 metric ton of purchased CO₂ stored within Morrow B sand
- ~ 94% of purchased CO_2 stored

Model Horizons

Model Details

Model Details

Permeability Distribution (Morrow Sand)

CONFERENCE

Slide 10

Fault Modeling

- Model : Sperrivick Model
- Use Vsh, NGR, Permeability to compute SGR
- High SGR means completely seal fault
- Maximum burial depth: ~3300m
- Maximum depth at time of deformation: 1300m
- Minimum depth at time of deformation: 300m

Fluid Analysis- Regression Summary

Properties	Units	% Error	
Saturation Pressure	psia	2.84	
Oil Density	g/cc	1.3	
Vapor Z-factor		0.22	
GOR	Mscf/stb	1.58	
Gas Gravity		2.39	
Liquid Viscosity	ср	9.7	

Properties	Units	Observed	Before Regression	After Regression	%Error
MMP	psia	4200	3038.4	4008.8	4.5

Reservoir Simulation Base Model

P _{init} , psig @ Datum Depth	2203
P _{bubble} , psig @ Datum Depth	2059
OOIP, MMStb	71
Temperature, °F	168
Initial Water saturation	0.31

Slide 12

History Matching (HM) Process

HM Process

Production History

General: Field, Oil production rate • Primary (1956 – 1964) 6000 Oil production rate [STB/d] 2000 4000 Secondary (1964 – 2010) ${\color{black}\bullet}$ Field, Oil production rate rate [STB/d] 0 1960 1970 1980 1990 2000 2010 Date **Base Model** Simulated Model Observed 1970 1980 1960 1990 2000 2010 Date MY SIM PRIM 2

Assuming No flow across faults

HM Process- Primary & Secondary Recovery

History Match- CO₂-WAG

- Initial simulations showed a good match until CO₂ breakthrough
- This was attributed to potential changes in wettability and interfacial tension
- There is a possibility of the Morrow B transitioning into a mixedwet wettability system
- Corey parameters were adjusted to capture these potential changes to match tertiary recovery process

Slide 17

History Match- CO₂-WAG

Prediction Models

Prediction cases (Aug. 2016 – Jan 2036)

- **Case 1**: Current WAG patterns (12 wells) and adjacent water injectors (7 wells) with constant 10,000 Mscf/d CO₂ purchase in addition to recycle.
- Case 2: Convert all injectors to WAG wells (25 wells) with CO₂ purchase and recycle;
- A. With constant CO_2 purchase (10,000 Mscf/d).
- B. With decreasing CO_2 purchase from 2022 to 2030 and inject only recycled gas after 2030

Prediction Models- Additional Conditions

- Compressor capacity ~ 20,000 Mscf/d
- Initial WAG cycle = 3:1
- Production target = 3500 stb/d
- Injection target = CO₂ purchase + Produced (recycled)

Prediction Models- Summary

Results	Units	Case 1	Case 2A	Case 2B
CO ₂ Purchased	Bscf	90	90	61
Cumulative CO ₂ injected	Bscf	112	123	118
Gross CO ₂ Utilization	Bscf/MMStb	8	8	8
Cumulative CO2 Produced	Bscf	72	73	73
CO ₂ Recycle	Bscf	22	33	56
Cumulative volume CO ₂ stored	Bscf	40	50	45
% Storage	%	45	56	74
Net CO ₂ Utilization	Bscf/MMStb	3.0	3.0	3.0
Oil Incremental Recovery	MMStb	14	15	15
% Oil Incremental Recovery	%	19	21	21
Water Injection volume	MMStb	21	14	16

Can the best case be improved?

Optimization with proxy

- To evaluate the objective function with respect to a set of control parameters, a full simulation must be run. Therefore, the optimization can be a computationally intensive procedure.
- As a simplification, a proxy model can be used to replace the simulations in the optimization process.
- Unless the proxy model is properly validated, the optimization does not have any value.

Objective Function

- To co-optimize CO₂ storage and the oil recovery
- Multi-objective function

$$w_1 \times FOPT + w_2 \times CO_2$$
 storage

Where

- W = weight assigned to vector
- FOPT = cumulative oil production
- CO_2 storage = CO_2 purchased CO_2 produced + CO_2 recycle

Selected Control Variables

Control Variables	Units	Minimum	Maximum
Gas cycle Well Group 1(GD1) (2020-2036)	months	2	10
Gas cycle Well Group 2 (GD2) (2020-2036)	months	2	10
Gas cycle Well Group 3 (GD3) (2020-2036)	months	2	10
Gas cycle Well Group 4 (GD4) (2020-2036)	months	2	10
Water Cycle Well Group 1 (WD1) (2020-2036)	months	0	3
Water Cycle Well Group 2 (WD2) (2020-2036)	months	0	3
Water Cycle Well Group 3 (WD3) (2020-2036)	months	0	3
Water Cycle Well Group 4 (WD4) (2020-2036)	months	0	3
Production Group Rate Target (PROD_30)(2020-2036)	stb	500	3500
Well Bottomhole Injection Pressure (BHP_I)	psia	4700	5000
Well Bottomhole Production Pressure (BHP_P2) (2020-2036)	psia	1500	2500

Proxy Modeling

Polynomial Response surface method

$$y(x) = \beta_0 + \sum_i \beta_i X_i + \sum_i \sum_j \beta_{ij} X_i X_j + \sum_i \beta_{ii} X_i^2$$

- The quadratic model requires a minimum of (N+1)(N+2)/2
- 100 full simulations for training
- 10 validation simulations
- Using Latin hypercube sampling (DoE) algorithm

Proxy Validation

Multi-Objective function

Oil Production

Genetic Algorithm

 Stronger global search capabilities than the Evolution strategy

- Mixed-integer capabilities
- Roulette Wheel used as fitness selection operator
- Optimum solution realized at iteration # 1051

Parameters used in the optimization process

Population	100
Maximum generations	20
Mutation probability	5%
Minimum Iterations	1101

Flowchart of a genetic algorithm

Optimum Surrogate Case Validation

Response Surface Equation Export For Multi-Objective Function 2036-01-01 00:00:00.000

Proxy Name : Response surface proxy

Variables	Min Ma	ax
\$BHP_INJ1	4602	4997.24
\$BHP_PROD2	1008	2485.62
\$GCB1	2.074	9.92
\$GCB2	2.02	9.96
\$GCB3	2.076	9.95
\$GCB4	2.076	9.99
\$PROD1	1801	2989.83
\$PROD2	1506	2493.69
\$WCB1	0.016	2.98
\$WCB2	0.028	2.99
\$WCB3	0.026	3.00
\$WCB4	0.009	2.99

Variables	Input Value
\$BHP_INJ1	4585.0
\$BHP_PROD2	1735.0
\$GCB1	9.5
\$GCB2	7.0
\$GCB3	9.0
\$GCB4	5.8
\$PROD1	2318.2
\$PROD2	2417.7
\$WCB1	0.9
\$WCB2	0.4
\$WCB3	0.3
\$WCB4	0.2
Response	76621657

Simulated	77811411
% Error	1.53

Coefficient Type Coefficient Value NOTE: Coefficients are related to the equation in terms of shifted variables. Example: F(X) = F[(X1-X1min),(X2-X2min),...]

Prediction Models- Summary

Results	Units	Case 2B	Optimized
CO ₂ Purchased	Bscf	61	61
Cumulative CO ₂ injected	Bscf	118	158
Gross CO₂ Utilization	Bscf/MMStb	8	7
Cumulative CO2 Produced	Bscf	73	100
CO ₂ Recycle	Bscf	56	97
Cumulative volume CO ₂ stored	Bscf	45	58
% Storage	%	74	94
Net CO ₂ Utilization	Bscf/MMStb	3.0	3.2
Oil Incremental Recovery	MMStb	15	18
% Oil Incremental Recovery	%	21	25
Water Injection volume	MMStb	16	13

Prediction Models- CO₂ Volume Profile

3D Total Mole fraction of CO₂ distribution

Prediction Models- Simple Economic Model

Assumptions

- Oil price ~ \$45/bbl
- Royalty ~ 10%
- Water injection cost ~ \$1/bbl
- Recycle CO₂ credit ~ \$0.01/ton
- Produced CO₂ charge ~ \$0.01/ton
- Taxes (on taxable income) ~ 10%

Slide 33

Prediction Models- Simple Economic Model

Economic Parameters	Unit cost	Case 1	Case 2A	Case 2B	Optimized
Total Oil Revenue (\$M)	\$ 45/bbl	613	670	676	1138
Royalty (10%)	0.01	6	7	7	11
Recycle CO ₂ Credit	\$ 0.01	12	17	30	51
Total Revenue (\$M)		619	680	699	1177
Purchased CO ₂ Cost	\$ 40/ton	187	187	128	128
Produced CO ₂ Charge	\$ 0.01	38	38	38	53
Water injection Cost	1	21	14	16	13
Total Operating Cost (\$M)		245	239	182	194
Taxable Income		373	441	517	984
Taxes (10%)	0.01	4	4	5	10
Net Present Value (\$M)		370	437	512	974

25TH ANNIVERSA

Conclusions

- This work presented a recent efforts on history matching; scenario based performance assessment and optimization for CO₂-EOR process in the FWU
- Predicted models showed recycling a high percentage of produced gas, addition of well/patterns, and reduction of CO₂ purchase after some years of operations has a tendency of yielding higher oil recovery and CO₂ storage
- The use of complex multi-objective function resulted in optimum operational variables that yielded 94% of CO₂ storage and more than 25% incremental of OOIP oil recovery beyond waterflood at FWU.
- This work, and ongoing efforts, will serve as blue print for future CCUS project with Anadarko basin and similar geological basins in the world

References

Gunda, D., Ampomah, W., Grigg, R., & Balch, R. (2015, November). Reservoir fluid characterization for miscible enhanced oil recovery. In *Carbon management technology conference*. Carbon Management Technology Conference.

Ampomah, W., Balch, R. S., Grigg, R. B., Will, R., Dai, Z., & White, M. D. (2016, April). Farnsworth field CO 2-EOR project: performance case history. In *SPE improved oil recovery conference*. Society of Petroleum Engineers.

Ross-Coss, D., Ampomah, W., Cather, M., Balch, R. S., Mozley, P., & Rasmussen, L. (2016, May). An improved approach for sandstone reservoir characterization. In *SPE Western Regional Meeting*. Society of Petroleum Engineers.

Ampomah, W., Balch, R. S., Grigg, R. B., McPherson, B., Will, R. A., Lee, S. Y., ... & Pan, F. (2017). Co-optimization of CO2-EOR and storage processes in mature oil reservoirs. *Greenhouse Gases: Science and Technology*, 7(1), 128-142.

Ampomah, W., Balch, R. S., Cather, M., Rose-Coss, D., & Gragg, E. (2017, March). Numerical Simulation of CO 2-EOR and Storage Potential in the Morrow Formation, Ochiltree County, Texas. In *SPE Oklahoma City Oil and Gas Symposium*. Society of Petroleum Engineers.

Ampomah, W., Balch, R., Grigg, R. B., Cather, M., Gragg, E., Will, R. A., ... & Dai, Z. (2017). Performance assessment of CO 2-enhanced oil recovery and storage in the Morrow reservoir. *Geomechanics and Geophysics for Geo-Energy and Geo-Resources*, *3*(3), 245-263.

Acknowledgements / Thank You / Questions

Funding for this project is provided by the U.S. Department of energy's (DOE) national energy technology laboratory (NETL) through the Southwest Regional Partnership On Carbon Sequestration (SWP) under award no. DE-FC26-05NT42591. Additional support was provided by Perdue Petroleum, LLC and Schlumberger Carbon Services.

The author gratefully acknowledges the contributions of more than 50 SWP scientists and engineers, working at New Mexico Tech, The University Of Utah, The University Of Missouri, Los Alamos National Laboratory, Pacific Northwest National Laboratory, and Sandia National Laboratories.

