LIFE CYCLE ANALYSIS FOR CCS AND CCUS: LESSONS LEARNED AND CHANGING PARADIGMS

CO₂ & ROZ Conference
Carbon Management Workshop
Midland, Texas
December 4, 2017

Nick Azzolina, Ph.D., Principal Hydrogeologist and Statistician
A Few Topics to Stimulate Our Panel Discussion

• What do we know about life cycle greenhouse gas (GHG) emissions for transportation fuels and power generation when integrating CO₂ capture and storage (CCS)?
 a) Ethanol
 b) Incremental oil produced via CO₂ enhanced oil recovery (EOR)
 c) Power production from coal-fired or natural gas power plants

• How does (c) compare to alternative sources of electric power generation?

• Shortcoming of the current life cycle analysis (LCA) decision framework.

• Changing paradigms – broadening our comparative assessments.
What Do We Know About Life Cycle GHG Emissions for Transportation Fuels and Power Generation When Integrating CO$_2$ Capture and Storage?
For the LCA, It Is Important to Distinguish Between Dedicated and Associated CO₂ Storage

Dedicated CO₂ Storage
- Mitigation of GHG emissions is the primary purpose of underground injection.
- Storage of CO₂ in a deep saline formation.
- There are no additional products to consider in the system, which simplifies the LCA calculations.

Associated CO₂ Storage
- GHG mitigation is a secondary aspect of injection operations, typically at EOR sites.
- Storage of CO₂ in an oil reservoir incidental to the EOR process.
- Associated storage produces incremental oil, which affects the LCA calculations because we must allocate the emission reductions to both the upstream source and the oil producer.
Ethanol Produced with CO₂ Capture Results in a Significant Reduction in the Ethanol Carbon Intensity

- Example of dedicated CO₂ storage.
- The CO₂ generated at this facility contains minimal impurities (>99% CO₂), requiring nominal processing for injection.
- An LCA showed >40% potential net reduction of CO₂ emissions for ethanol-CCS at this facility.

Adapted from:
CO₂ EOR with CO₂ Capture Results in a Significant Reduction in the GHG Emission Factor for Oil Production

- Example of associated CO₂ storage.
- CO₂ captured from a lignite coal-fired power plant.
- Displace electricity from the MRO NERC Region (Midwest Reliability Organization, North American Electric Reliability Corporation), which spans the Canadian provinces of Saskatchewan and Manitoba and all or parts of the U.S. states of Illinois, Iowa, Michigan, Minnesota, Montana, Nebraska, North Dakota, South Dakota, and Wisconsin.

- **Oil via CO₂ EOR ~20% lower emission factor (EF).**

Adapted from:
CO₂ Capture and Storage Results in a Significant Reduction in the GHG Emission Factor for Power Production

- Examples of both dedicated (CCS) and associated (CCUS) CO₂ storage.
- CCS → CO₂ stored in a deep saline formation. No coproducts.
- CCUS → CO₂ utilized for EOR, and the system produces both power and crude oil. GHG burdens are assigned to power using displacement of crude oil.

The CCUS scenarios assume displacement of crude oil. There is a strong case for displacement of natural dome CO₂ production. Under this assumption, CCUS ≈ CCS.

Adapted from:

How Does Power Generation with CO$_2$ Capture Compare to Alternative Sources of Electric Power Generation?
Good Resources for Life Cycle Assessments

• National Renewable Energy Laboratory (NREL)

• Harmonized to standardize methods, such as
 – Global warming potentials (GWPs) of methane (CH$_4$) and nitrous oxide (N$_2$O).
 – Lifetime (years).
 – Capacity factor (ratio of actual to potential electricity generation).
 – System boundary.
Life Cycle GHG Emissions for Different Sources of Electric Power Generation

Life Cycle GHG Emissions (g CO₂e/kWh)

- Wind
- Nuclear
- Conc. Solar
- Photovoltaic
- Nat. Gas (Status Quo)
- Nat. Gas (CCUS)
- Nat. Gas (CCS)
- Coal (Status Quo)
- Coal (CCUS)
- Coal (CCS)

Adapted from NREL data
Adapted from DOE NETL data

Completeness bias?
Shortcomings of the Current LCA Framework
LCA Assigns Ownership of Environmental Burdens to a Single Product (e.g., oil or electricity)

• In the current LCA framework, the sole focus is on GHG emissions.
• No other metrics are included in the analysis?! What about:
 – Supply
 – Reliability
 – Implementability
 – Cost
 – Etc.
• How can policy makers make sound decisions about investments in the energy sector when our analyses provide them with woefully incomplete information?
Changing Paradigms – Broadening Our Comparative Assessments
Broader Assessments that Account for Multiple Components Are Needed to Guide Data-Driven Decision Making

- We have sufficient data and tools to derive accurate LCAs of GHG emission for various sources of electric power and transportation fuels.
- We lack sufficient data and tools to integrate multiple factors such as supply, reliability, implementability, and cost into a more comprehensive evaluation.
- A multimetric index is needed, which will provide the type of information required to appropriately plan and prioritize investments in energy over the next half-century.
- For example:

\[
\text{Index} = \text{GHGs} + \text{Supply} + \text{Reliability} + \text{Implementability} + \text{Cost}
\]

The current LCA approach treats these terms as zeros.
Primary Energy Consumption of Oil, Gas, and Coal Must Increase to Meet Growing Energy Demand

Must increase to meet growing energy demand
Summary and Conclusions

• LCAs show that CCUS implemented in an electric power–crude oil system generates both products (electricity and crude oil) with lower GHG emissions. However, even with CO$_2$ capture, alternative sources of electric power like wind, nuclear, and concentrated solar will likely have lower-life-cycle GHG emissions.

• The current LCA framework, which focuses on GHGs as the sole metric for comparison across sources of primary energy, fails to account for a multitude of factors that should influence our policy decision making. Consequently, the current LCA framework is of limited utility to plan and prioritize investments over the next half-century.

• A broader comparative assessment is needed that integrates multiple factors such as supply, reliability, implementability, and cost, in addition to GHGs, into a more comprehensive evaluation.
CONTACT INFORMATION

Energy & Environmental Research Center
University of North Dakota
15 North 23rd Street, Stop 9018
Grand Forks, ND 58202-9018
www.undeerc.org

Nick Azzolina
Principal Hydrogeologist and Statistician
nazzolina@undeerc.org
701.777.5120

Charlie Gorecki
Director of Subsurface R&D
cgorecki@undeerc.org
701.777.5355
THANK YOU!