A New Look at Impurities in CO_2 for EOR and their Consequences

Ray McKaskle, P.E. *Trimeric Corporation*

Presented at the 20th Annual CO₂ Flooding Conference

December 11-12, 2014

Midland, Texas

Presentation Overview

- Example specifications for Pipeline / EOR CO₂
- Technical and economic impacts of several types of impurities that may be found in Pipeline / EOR CO₂
 - Water
 - Oxygen
 - Hydrogen Sulfide
 - Nitrogen
 - Hydrocarbons (CH_4 , C_2H_6 , C_3H_8 +)
 - Others (Ar, H₂, CO, NO_x, SO₂, COS, glycol, compressor oil)
- Conclusions

Why Do We Need Specifications?

Example Pipeline / EOR Specifications (1 of 2)

Component	Example Industrial Pipeline (Ref. 1)	DOE Pipeline Design Guideline (Ref. 2)	DOE EOR Design Guideline (Ref. 2)
CO ₂	≥ 95 mol. %	≥ 95 vol. %	≥ 95 vol. %
H ₂ O	≤ 30 lb / MMcf (633 ppmv)	≤ 500 ppmv	≤ 500 ppmv
Oxygen	≤ 10 ppmw	≤ 10 ppmv	≤ 10 ppmv
H_2S	≤ 20 ppmw	≤ 100 ppmv	≤ 100 ppmv
Total Sulfur	≤ 35 ppmw		
Nitrogen	≤ 4 mol. %	≤ 4 vol. %	≤ 1 vol. %
Hydrocarbons	≤ 5 mol. %	(next slide)	(next slide)
Glycol	≤ 0.3 gal / MMcf	≤ 46 ppbv	≤ 46 ppbv

Ref 1 – CO₂ Transportation, Ken Havens, Kinder-Morgan CO2 Company, June 5, 2008

Ref 2 – National Energy Technology Laboratory, Quality Guidelines for Energy System Studies, CO₂ Impurity Design Parameters, August 2013

Example Pipeline / EOR Specifications (2 of 2)

Component	DOE Pipeline Design Guideline (Ref. 2)	DOE EOR Design Guideline (Ref. 2)
Ar	≤ 4 vol. %	≤ 1 vol. %
H ₂	≤ 4 vol. %	≤ 1 vol. %
CH ₄	≤ 4 vol. %	≤ 1 vol. %
C_2H_6	≤ 1 vol. %	≤ 1 vol. %
C ₃ +	< 1 vol. %	< 1 vol. %
СО	≤ 35 ppmv	≤ 35 ppmv
NO _x	≤ 100 ppmv	≤ 100 ppmv
SO ₂	≤ 100 ppmv	≤ 100 ppmv
COS	Trace	≤ 5 ppmv

Ref 2 – National Energy Technology Laboratory, Quality Guidelines for Energy System Studies, CO₂ Impurity Design Parameters, August 2013

Impacts of Water in CO₂

Corrosion of carbon steel

Corrosion of carbon steel tube sheet placed in wet CO_2 , water condensing service.

CO₂-H₂O Hydrates

Puck of solid CO₂ hydrate

http://www.bgs.ac.uk/scienceFacilities/laboratories/ research/hydrates.html

Saturation Water Content in CO₂

Phase, Pressure, and Temperature – Impacts on Corrosion in CO₂ Pipeline and EOR Applications

- Under normal conditions, a free liquid phase (usually water) has to be present for corrosion to occur in CO₂ pipeline and EOR applications
- Higher partial pressure and temperature of CO₂ generally increase the corrosion rate
 - Increasing concentration of CO₂ increases partial pressure of CO₂
 - Increasing total pressure increases partial pressure of CO₂
- de Waard-Milliams Equation (Ref 4)

 $Log V_{corr} = 5.8 - 1710 / (273+t) + 0.67 log (pCO_2)$

V_{corr} in mm/year, t is temp in °C, and pCO₂ is partial pressure of CO₂ in bar

Ref 4 – de Waard C, Lotz U. Prediction of CO₂ corrosion of carbon steel. Corrosion/93 Paper No 69, NACE, Houston, Texas 1993

Impurity Impacts on Corrosion in CO₂ Pipeline and EOR Applications

- At 75% relative saturation, an O₂ concentration of 1 mol. % (10,000 ppmv) produced a corrosion rate of 0.37 0.40 mils per year (Ref 5)
- At 75% relative saturation, an H₂S concentration of 5 mol. % (50,000 ppmv) produced a corrosion rate of 0.16 mils per year (Ref 5)
 - Rule of thumb is that corrosion rates ≥ 1 mil per year begin to trigger closer monitoring and perhaps efforts to reduce corrosion rates
- Once CO₂ containing small amounts (> 10 ppmv) of O₂ or H₂S is injected in a formation and contacts water, corrosion and other problems in the injection well, the formation, and the recycle facility may occur

Ref 5 - GPA Research Report RR-222 "Corrosion in Acid Gas Injection Systems", June 2014

CO₂ – Water Hydrates

H here stands for Hydrate. We are concerned about temperatures dropping lower than this line (primarily at pressures in the highlighted region).

Figure used courtesy of GPA. Ref 6 - GPA Research Report RR-99 "The Water Content of CO2 Rich Fluids in Equilibrium with Liquid Water and / or Hydrates", June 1986.

Water Removal Costs (1 of 2)

- TEG (triethylene glycol) absorption-based dehydration is most common
 - Installed equipment costs are on the order of \$ 30,000 / MMscfd of treatment capacity (for a nominal 50 MMscfd plant)
 - Installed equipment costs in \$ / MMscfd decrease with increasing throughput capacity
 - Operating costs are fairly minimal (fuel gas, glycol)
- If pressure is higher than about 1,000 psig, glycerol is often used instead of TEG
 - TEG solubility in CO₂ increases with increasing pressure and losses would be unacceptably high
 - Equipment costs are comparable to TEG
 - Operating costs are slightly higher
 - Water loading is higher at these pressures, so fuel costs for regeneration are higher
 - Glycerol is typically more expensive than TEG

Water Removal Costs (2 of 2)

- If refrigeration-based processes such as CO₂ liquefaction for distillation or Natural Gas Liquids recovery are involved, then adsorption-based processes (molecular sieve) may be required
 - Higher capital and operating costs
 - Installed equipment costs are on the order of \$ 50,000 / MMscfd of treatment capacity (for a nominal 60 MMscfd plant)
 - Installed equipment costs in \$ / MMscfd decrease with increasing throughput capacity
 - More complex operation
 - Cyclical operation of drying and regenerating beds
 - Monitor performance of media over time (months) and adjust cycle times until it becomes necessary to replace adsorbent media (years)

Impacts of Oxygen

- Once CO_2 containing O_2 contacts water, the mixture is more corrosive than CO_2 and water in the absence of O_2
- Oxygen can lead to biological growth in the formation
- Oxygen can oxidize TEG and glycerol
- Oxygen can react with H₂S under certain conditions to form elemental sulfur, sulfuric acid, and / or other sulfur compounds
- It is difficult to treat a CO₂ stream to remove oxygen
 - Liquefaction and distillation have been used in some applications
 - Some catalytic approaches may be applicable in principle
 - Preferred approach is to try and limit the introduction of oxygen at the source

Comparison of H₂S and CO₂ Exposure Limits

Component	OSHA Ceiling	OSHA PEL	OSHA IDLH
H ₂ S	20 ppmv	50 ppmv for 10 minutes	100 ppmv
CO ₂		5,000 ppmv for 8 hour shift	40,000 ppmv

Definitions

- Ceiling at no time should this exposure limit be exceeded
- PEL permissible exposure limit
- IDLH immediately dangerous to life or health
- While the toxicity of H_2S is well known in this industry, the toxicity of pipeline / EOR quality CO₂ also needs to be understood
- Toxicity risks of CO₂ are not the same as the asphyxiation hazard of CO₂

For more details, see Tyndall, K., K. McIntush, J. Lundeen, K. Fisher, C. Beitler, "When is CO₂ more hazardous than H₂S", Hydrocarbon Processing, January 2011, Vol. 90, No. 1, pp. 45-48. RIMERIC CORPORATION 14

Impacts of Hydrogen Sulfide (1 of 2)

- Limits on the order of 10 ppmv are often specified for these reasons:
 - Concerns with toxicity and odor
 - Avoid monitoring and public hearing requirements for Texas RR Comm. Rule 36 when $H_2S > 100$ ppmv and similar rules in other states
 - May avoid designing to meet NACE MR0175 requirements to prevent sulfide stress corrosion cracking
- Presence of H₂S in CO₂ EOR is common in West Texas, but
 > 10 ppmv in other areas can be a concern because concentrations could increase with recycle and H₂S accumulates in in low pressure steps (flash and storage)
- H₂S can react with O₂ or SO₂ under certain conditions to form elemental sulfur, sulfuric acid, and / or other sulfur compounds

Impacts of Hydrogen Sulfide (2 of 2)

- H₂S lowers the minimum miscibility pressure, which is a benefit to EOR operations
- Trace amounts (10's of ppmv) can usually be treated economically with scavengers
 - Order of magnitude costs are \$5 to 20 / lb of H₂S removed
 - As an example, annual operating costs to treat 8 MMscfd of CO_2 to lower H₂S from 440 to 4 ppmv are on the order of \$750,000
- Higher levels (% levels) require liquid redox or absorption processes
 - Higher capital costs than scavengers
 - Lower operating costs than scavengers

Impurities Impact Operating Costs

• Example Scenario

 100 MMscfd, 100 mile, 12-inch pipeline, 2,000 psig pipeline inlet pressure, booster pump at end of pipeline to get back to 2,000 psig injection pressure

Individual Impurity	Booster Pump Inlet Pressure for 2 vol. % Impurity (psig)	Additional Power Cost for 2 vol. % Impurity at \$ 0.07/kW-hr (\$/yr) and (%)		Booster Pump Inlet Pressure for 4 vol. % Impurity (psig)	Additional Power Cost for 4 vol. % Impurity at \$ 0.07/kW-hr (\$/yr) and (%)	
None	1,590			1,590		
Ar	1,583	\$ 6,404	4 %	1,574	\$ 15,096	9 %
H ₂	1,587	\$ 6,404	4 %	1,581	\$ 16,468	10 %
N ₂	1,585	\$ 5,489	3 %	1,579	\$ 12,351	8 %
CH ₄	1,589	\$ 3,202	2 %	1,587	\$ 7,319	4 %
C_2H_6	1,586	\$ 4,117	3 %	1,582	\$ 8,691	5 %
C ₃ H ₈	1,583	\$ 5,032	3 %	1,575	\$ 10,979	7 %

Impacts of Nitrogen

- N₂ will increase the minimum miscibility pressure and raise the critical pressure, which increase operating costs and are detrimental for oil production
- N₂ will decrease the saturation water content of CO₂
- N₂ will increase the potential for hydrate formation
- Presence of N₂ can require increased transport pipe strength due to ductility issues (Ref 2)
- Some operators place a limit on the total "light gases", "noncondensables", or "inerts" in the range of 2 vol. % to 4 vol. %

Ref 2 – National Energy Technology Laboratory, Quality Guidelines for Energy System Studies, CO2 Impurity Design Parameters, August 2013

Impacts of Hydrogen

- H₂ will increase the minimum miscibility pressure and raise the critical pressure, which increase operating costs and are detrimental for oil production
- Presence of H₂ can require increased transport pipe strength due to ductility issues (Ref 2)
- Some operators place a limit on the total "light gases", "noncondensables", or "inerts" in the range of 2 vol. % to 4 vol. %
- H₂ is valuable and would likely be lowered to far less than 4 vol. % in a CO₂ stream under normal operating conditions

Ref 2 – National Energy Technology Laboratory, Quality Guidelines for Energy System Studies, CO2 Impurity Design Parameters, August 2013

Impacts of Methane

- CH₄ will increase the minimum miscibility pressure and raise the critical pressure, which increase operating costs and are detrimental for oil production
- CH₄ will decrease the saturation water content of CO₂
- CH₄ will increase the potential for hydrate formation
- Hydrocarbons accumulate in recycle CO₂ over time in facilities without NGL recovery
 - Changes the viscosity of the oil by stripping away lighter components
 - Takes up pore space, which is detrimental to $CO_2 EOR$
- Some operators place a limit in the range of 0.3 vol. % to 1 vol. % on $\rm CH_4$

Impacts of Other Hydrocarbons

- C₂H₆, C₃H₈, and heavier hydrocarbons will decrease the minimum miscibility pressure, which is beneficial for oil production
- Hydrocarbons accumulate in recycle CO₂ over time in facilities without NGL recovery
 - Change the viscosity of the oil by stripping away lighter components
 - Take up pore space, which is detrimental to CO₂ EOR
- Some operators place a limit in the range of 3 vol. % to 5 vol. % on total hydrocarbons
- Hydrocarbon removal (including CH₄) is typically done with membranes or via liquefaction and distillation
 - Capital intensive process on the order of \$80 MM for a 200 MMscfd facility
 - Capital and operating costs may be offset by NGL and sales gas revenue

Impacts of CO, NO_x, SO_{2,} and COS

- Limits on CO, NO_x, and SO₂ are largely driven by health and safety related exposure limits
- COS is a concern for the following reasons:
 - COS can hydrolyze to H_2S in the presence of free water, which means that pipeline CO_2 that starts with COS may come back as CO_2 with H_2S in the recycle stream
 - COS is unacceptable in food and beverage CO₂ product and removal costs are significant
- As more manmade CO₂ sources are transported in pipelines and used for EOR, the impacts of these types of impurities will become better understood and current proposed limits may be revised

Impacts of Glycol and Compressor Oil

- In addition to concentration limits, specifications may require that no glycol can be present in a liquid state at the pressure and temperature conditions of the pipeline
- Excess glycol carryover can cause damage to seals and other components (Ref 2)
- Use of mineral oil for CO₂ compressor cylinder lubricant has led to asphaltene plugging issues in injection wells requiring acid treatments
- Use of higher cost synthetic oil avoids this problem, but it is important to keep mineral oil and synthetic oil separate because they can form a gel when mixed together

Ref 2 – National Energy Technology Laboratory, Quality Guidelines for Energy System Studies, CO2 Impurity Design Parameters, August 2013

Conclusions

- Limiting impurities in CO₂ transported in pipelines and used for EOR is necessary to ensure reliable operation and to protect health, safety, and the environment
- Specification limits must be determined on a case by case basis considering the source of the CO_2 and the use of the CO_2
- As more manmade CO₂ is transported in pipelines and used for EOR, impacts of newer types of impurities will be become better understood and proposed limits may be revised

