Air Products: Success in Advanced Separation and CO$_2$ Processing for EOR

John Palamara, Galip Guvelioglu, Steven Carney
Air Products and Chemicals, Inc.
Presented at the 19th Annual CO$_2$ Flooding Conference

December 11-13, 2013
Midland, Texas December 12, 2013
Air Products Overview

- Multinational corporation producing Industrial Gases, Chemicals, and Energy Systems
 - Sales of $10.3B (FY13)
 - >250,000 customers worldwide
 - Operations in >50 Countries
 - Industry safety leader
 - Leader in sustainability

- World’s largest manufacturer of hydrogen at more than >2 BSCF/day

- World leader in LNG technology

- Pioneer of cryogenic N₂ injection for enhanced oil recovery

- Build, own & operate industrial gas facilities with high reliability
Air Products & CO₂

- Solutions for the EOR Industry
 - Developing, financing, constructing, and operating CO₂ processing facilities
 - Helium Recovery Project
 - Port Arthur CO₂ Project
 - New H₂S Removal Technology, NGL recovery

- Industrial CO₂ business in Americas & Europe
 - Recent purchase of EPCO CO₂ business

- CO₂ Capture R&D
 - Evaluation and development of broad range of CO₂ Capture Technologies
 - Pilot demonstration of CO₂ processing unit for oxyfuel combustion of coal at Vattenfall’s research and development facility in Schwarze Pumpe, Germany
Air Products Technical Capabilities

- Industry Leader in **Safety**
- World Class **Engineering & Construction**
 - R&D, Technology, Engineering, Plant Design
 - Over 1,000 employees in Allentown, London, Shanghai
 - $ 3 billion of projects in execution
 - Project Management, Turnkey Capability
- Global Equipment **Manufacturing**
 - Facilities in Wilkes-Barre PA, Shanghai, Malaysia
 - Manufacturing partners and suppliers globally
- **Operating** Organization
 - Over 8,000 employees (40%) in operations
 - 700+ operating plants around the world
We seek employ the **optimal technical solution**, be it developed by AP or a third party.
Challenging CO₂ Impurities Require Advanced Separation Technology

- **Low-value impurities** include H₂S, N₂, CH₄, SOx,
 - Goal is to remove as cost effectively and safely as possible to meet EOR specifications for the CO₂ product
 - Technology minimizes the cost of unlocking CO₂ for EOR

- **High-value “impurities”** include NGL’s and Helium
 - Goal is to recover with optimal cost/recovery tradeoff
 - Technology used to unlock high value for the CO₂ project

- **The Process** – a staged approach

 Setting the premise → Executing the plan

 Setting the premise:
 - Gas Composition
 - Existing Infrastructure
 - Future Growth Plans

 Executing the plan:
 - Product Value
 - Recovery Targets
 - Design Basis
 - Technology Selection
 - Project Development
 - Permits
 - Project Execution
 - Start up & Commissioning
 - Maintenance
 - Reliability
Air Products Port Arthur CO₂ Project

New technology to recover anthropogenic CO₂ for EOR

- Capture and purification of CO₂ from hydrogen plants (syngas) for EOR
- 50 MMSCFD of CO₂ to Denbury’s Green Pipeline for West Hastings oilfield
- Retrofit of 2 Steam-Methane Reformers (SMR) that sit in the middle of a refinery
- Technology developed by Air Products
- 90%+ capture of CO₂
- 30 MWe Cogeneration unit to generate power and make-up steam
- Total project $431 MM
- DOE Share: $284 MM (66%)
Project Overview:
State-of-the-Art Carbon Capture from Two Port Arthur, TX SMRs

- American Recovery and Reinvestment Act Funding
 - 1 of 8 Large CO₂ Capture Projects Supported by the US DOE
- ~1 million tons of CO₂ to be recovered and purified annually starting late 2012
- Valero providing land, rights-of-way, utilities
- AP supplying compressed and purified CO₂ to Denbury for injection into TX oilfields for enhanced oil recovery
Simplified CO₂ Capture Block Flow Diagram

PORT ARTHUR 2

Natural Gas
Utilities
HP Steam Export
Power Export

Existing Stream

New Stream

Revised Stream

EXISTING SMR

Purge Gas

Syngas

Syngas (CO₂ Removed)

Export Hydrogen

Export CO₂

NEW COMPRESSOR / DRIER

Wet CO₂

CO₂

H₂

PORT ARTHUR 1

Natural Gas
Utilities
HP Steam Export
Power Export

Existing Stream

New Stream

Revised Stream

EXISTING SMR

Purge Gas

Syngas

Syngas (CO₂ Removed)

Export Hydrogen

Export CO₂

NEW VSA

Wet CO₂

CO₂

H₂
Vacuum Swing Adsorption Process for CO₂ Separation

Flow

SMR CO₂ Rich Syngas

H₂ CO₂

Sweet Syngas to Existing H₂ PSA

To Feed

CO₂
Key Project Components
Capturing CO₂ for Denbury’s “Green Pipeline”

- Vacuum swing adsorption (VSA) vessels
- Tri-ethylene glycol (TEG) drier system
- CO₂ export compressor
 - Export pressure over 2000 psig (~140 bar)
- 13 mile (21 km) CO₂ Pipeline connecting to Denbury’s “Green” 300+ Mile (~500 km) CO₂ Pipeline

Map shows Denbury’s Green CO₂ Pipeline. Data source is Denbury, December 2011, CO₂ Flooding Conference
Overview of Project Site, Port Arthur II

Source: Air Products and NETL

Air Products and Chemicals, Inc: Port Arthur 2
Close-up View

Eight-stage, integrally-geared centrifugal CO₂ compressor

CO₂ surge tank delivery

CO₂ VSA Vessels
Validation of Design

CO₂ Product Purity

CO₂ Recovery

Port Arthur II Operation
February 2013

Design Operating Curve
Port Arthur CO$_2$ Project
Operational Update

- Project Timeline:
 - Phase 2 awarded – June 2010
 - FEED complete - Nov 2010
 - Foundations – September 2011

- CO$_2$ Capture On-stream:
 - PA-II SMR – December 2012
 - PA-I SMR – March 2013

- Full capacity achieved **April 2013**

- CO$_2$ delivered: 500,000 tons
 - Through the end of September 2013

- Retrofit within an operating facility

- Integration with existing hydrogen business
Do you know what’s in your gas??

- **Helium** recovery from CO$_2$ provides opportunity
 - Unlocks value when recovered from CO$_2$ currently processed
 - Helium can improve economic viability of new CO$_2$ sources

- **Air Products** is a global leader in helium supply
 - Pioneered many of the helium extraction, production, distribution and storage technologies used in the industry today and operates numerous facilities around the world.
Why is Helium important?

Demand growth of 3-5% annually

Fiber Optics

Balloons & Lifting

Cutting and Welding

Electronics

Pressurizing/Purging

Medical Imaging (MRI)

Source: 2012 Gasworld
Where does Helium come from?

- By-product of gas production
- Formed by the decay of elements in the earth’s crust (Uranium and Thorium)
 - Only found in certain gas fields
 - Where gases formed together and capped by impermeable rock
 - New helium supplies are required to meet demand
Doe Canyon CO$_2$ Source Field

- Kinder Morgan CO$_2$ Source in Dolores County, SW Colorado
- Expanded to 170 MMSCFD CO$_2$ capacity
- ~0.3% helium
Helium Extraction from CO₂

- Helium is in the CO₂ stream
- This project will extract the helium from the CO₂ stream and return the CO₂ to the pipeline
- Helium will be liquefied and then transported from the site in tanker trucks
- First commercial recovery of helium from pure CO₂ stream
Proprietary Helium Recovery Technology

Feed
- 170 MMSCFD
 - CO₂: 97%
 - N₂: 2.6%
 - He: 0.3%

CO₂ Product
- 169.5 MMSCFD
 - CO₂: 97.3%
 - N₂: 2.6%
 - He: 0.0%

Pure He To Liquifier
- He: 99.9%

He Polishing

Heat Exchanger Network

Distillation Column

Compression

Dehy

H₂O

Network

Polishing
Project Details

- First commercial project to recover helium from pure CO₂
- CO₂ product is used as refrigerant (auto-refrigerated process)
- No CO₂ is lost in the helium recovery system
- >98% helium recovery
- No combustion sources / no process vents
- 230 MMSCF/y of helium replaces 15% of BLM supply volume
Air Products Helium Extraction Facility

- Site preparation / civil work has commenced
- First helium production: Spring 2015
What’s Next in CO₂ Purification?

- **H₂S and CO₂**
 - A common impurity in CO₂ sources
 - A difficult challenge (they like each other!)

- There are good solutions for low-levels of H₂S (100’s of ppm)

- At higher levels of H₂S there are fewer options
 - **Ryan Holmes Processes** – an option if C₄+ hydrocarbons are present in the feed
 > Energy/CAPEX intensive
 - **Solvent Processes** – an option where sulfur production is desired, energy is cheap, or syngas/methane content is high
 > H₂S is removed at low pressure, high compression power for CO₂
 - **Distillation Process** – an option where CO₂ and H₂S are needed at high pressure
CO₂/H₂S Distillation Technology to Address Challenges at high H₂S levels

- Air Products has developed a technology to separate EOR-grade CO₂ from H₂S that provides advantages over solvent-based processes
 - Draws upon Air Separation / Hydrocarbon Experience
- Process designed for efficiency and reliability:
 - Conserves feed pressure
 - Uses CO₂ as its own refrigerant
 - No fuel or steam necessary, no solvents
 - CO₂ recoveries of up to 98.5% are practical
 - Studies show substantial advantages when H₂S >0.5%
 - H₂S spec in CO₂ of 100 ppm is typical starting point, lower levels are possible
Closing Thoughts

• New gas separation challenges in CO₂
 - Complex projects take a disciplined approach
• Technology choices are specific to type and disposition of impurities, leveraging existing infrastructure
• High-value impurities like Helium offer an opportunity to provide value back to CO₂ producers
• Setting the correct project premise is key
Acknowledgement: This material is based in part upon work supported by the Department of Energy Under Award DE-FE0002381.

- Disclaimer: “This material was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, products, or process, disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process or services by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”
Thank you

airproducts.com

Contact Information:

Steven Carney
Global Business Development
carneysr@airproducts.com

John Palamara
Technology
palamaje@airproducts.com